
The Journal of Systems and Software 208 (2024) 111912

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Revealing code change propagation channels by evolution history mining✩

Daihong Zhou, Yijian Wu ∗, Xin Peng, Jiyue Zhang, Ziliang Li
School of Computer Science, Fudan University, 2005 Songhu Road, Shanghai, China
Shanghai Key Laboratory of Data Science, 2005 Songhu Road, Shanghai, China

A R T I C L E I N F O

Dataset link: https://github.com/FudanSELab/
cpcminer

Keywords:
Code change propagation
Change impact analysis
Evolutionary coupling
Long-term impact
Frequent subgraph mining

A B S T R A C T

Changes on source code may propagate to distant code entities through various kinds of relationships, which
may form up change propagation channels. It is however difficult for developers to reveal code change
propagate channels due to sophisticated interrelationships among code entities. In this work, we propose a
novel graph representation for the changed code entities and related code entities changed within a range of
space and time so that the types of relationships along which the changes are propagated can be explicitly
presented. Then a subgraph mining technique is used to find the frequent change propagation channels.

We finally reveal 40 types of frequent change propagation channels that cover over 98% cases of code
change propagation in five well-known open-source Java projects. We find evidence that the code changes
propagated through an unchanged intermediate code entity consume more time than those through a changed
one, indicating the difficulties in maintaining code entities that related through indirect relationships. We find
that a small proportion of code entities frequently appear in the FCPCs, and confirm the semantic relationships
between code entities covered by 50 instances of FCPCs, indicating potential usefulness for developers to
explain the range of change impact from given source code changes.
1. Introduction

Software is typically implemented by multiple interrelated source
code entities. The difficulty of software maintenance typically comes
from the complexity of the interrelationships that prevents developers
from easily figuring out how to make changes to source code. When
developers change some code entities, such as classes, methods, or
variables, some other code entities linked directly or indirectly by dif-
ferent relationships could be impacted and should be correspondingly
changed. This phenomenon is usually recognized as code change prop-
agation (Hassan and Holt, 2004; Ren et al., 2004). The relationships
propagating changes could be of various kinds, such as method calls,
inheritance structure, code clones or other implicit ones, and act as a
path of propagation (Han, 1997). The paths consist of the combina-
tions of the relationship types, linking up multiple code entities. We
identify the paths as code change propagation channels if they have
repeatedly propagated changes in the software maintenance history.
A typical change propagation channel is depicted in Fig. 1, where the
changes originating from the code entity 𝑒3 frequently cause changes
in another related code entity 𝑒2 and further in a third code entity
𝑒1. If such change propagation is commonly found in code entities

✩ Editor: Alexander Chatzigeorgiou.
∗ Corresponding author at: School of Computer Science, Fudan University, 2005 Songhu Road, Shanghai, China.
E-mail addresses: dhzhou17@fudan.edu.cn (D. Zhou), wuyijian@fudan.edu.cn (Y. Wu), pengxin@fudan.edu.cn (X. Peng), 20212010070@fudan.edu.cn

(J. Zhang), 20210240204@fudan.edu.cn (Z. Li).

connected by the same types of relationships, we say these links of
specific relationship types are change propagation channels.

Revealing the change propagation channels is important for soft-
ware maintenance. First, developers may be unaware of the implicit
paths that propagate changes to a distant code entity as they make
changes. Missing change propagation might lead to bugs or other
quality issues (Wang et al., 2018b). Identification of the channels could
be beneficial for finding potentially missing changes and preventing
bugs. Second, due to the complexity in software design, the number of
relationships among code entities could be too large for developers to
fully comprehend the structure of the software. Unveiling the channels
helps developers to put more focus on the relationships that frequently
play the path role and possibly to identify opportunities to optimize the
design of the software.

However, traditional approaches such as change impact analysis
(CIA) or co-change analysis do not suffice in revealing the change
propagation channels. Traditional CIA approaches typically rely on the
snapshot of software and find the code entities related to changed ones
by structural dependencies (Oliva and Gerosa, 2015; Ren et al., 2004),
code clone relationship (Mondal et al., 2019, 2020a), or some other
relationships (Hassan and Holt, 2004). The large number and various
vailable online 22 November 2023
164-1212/© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2023.111912
Received 17 October 2022; Received in revised form 27 July 2023; Accepted 20 N
ovember 2023

https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
mailto:dhzhou17@fudan.edu.cn
mailto:wuyijian@fudan.edu.cn
mailto:pengxin@fudan.edu.cn
mailto:20212010070@fudan.edu.cn
mailto:20210240204@fudan.edu.cn
https://doi.org/10.1016/j.jss.2023.111912
https://doi.org/10.1016/j.jss.2023.111912
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111912&domain=pdf

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.

t
p
p
p
b
d
l
p
c

p
a
b
c
o
1
n
a
t
e
r
E
i
d
i
t
r

a
o
t
d
p
b
w
p
p
c
w
t
c
b

c
R

c
R
f
t
a
c

s
p
T

Fig. 1. An example of change propagation channel.

ypes of the relationships between code entities result in numerous
otential paths to propagate changes. Most of the code entities on the
aths do not frequently change. The purpose of revealing the change
ropagation channels is not only to identify the impacted code entities
ut to find the recurring patterns of how changes propagate through
ifferent types of relationships. Therefore, the frequently recurring
inks of relationship types that propagate changes, or code change
ropagation channels, could not be revealed by only considering the
ode entity links at single snapshots of the source code.

Co-change analysis provides a statistic-based way for revealing the
atterns of change propagation from history. Two source code entities
re said to be co-changed if they are changed in the same commit. The
asic idea is that the code entities are usually closely related if the
ode entities often co-changed in the history. Therefore, the changes
n one entity are very likely to propagate to the other (Agrawal et al.,
993; Zimmermann et al., 2005). However, co-changes analysis does
ot cover related changes in different commits. Some changes may have
long-term impact on other code entities, which result in the fact that

he related code changes take place at a distant location several days or
ven weeks later (Brudaru and Zeller, 2008; Herzig, 2010). We call the
elated changes that spread in a period of time the long-term changes.
ven if there has been research work that captures related code changes
n different commits (Herzig and Zeller, 2011; Jaafar et al., 2014), the
ifferent types of relationships that link the code entities are not deeply
nvestigated so that the change propagation is not explained in terms of
he relationships. Therefore, the change propagation channels are not
evealed.

In this work, we focus on revealing the change propagation channels
nd finding empirical evidence on how source code changes propagate
n these channels in both co-changes and long-term changes. We consider
he fine-grained relationships among code entities, including structure
ependencies and code clone relationships. Specifically, the change
ropagation channel is defined as a path of two code entities linked
y two relationships with one or two intermediate code entities, along
hich changes made to the code entity at one end are frequently
ropagated to the code entity at the other end. For this purpose, we
ropose a novel graph representation of the source code changes, which
ould capture the relevant code changes within limited time and space,
hile filtering out other irrelevant code changes. We then transform

he graph representation into a new form which is independent of the
oncrete code entities so that the change propagation channels could
e mined by existing graph mining techniques.

We try to answer the following five research questions.
• RQ1: Do the long-term changes widely exist in software maintenance
history in contrast to the co-changes?

• RQ2: Do change propagation channels exist? If so, which types of
relationships between code entities frequently play the role of channels
that propagate changes?

• RQ3: Are there significant differences in the change time intervals for
changed code entities involved in the different types of frequent change
propagation channels?

• RQ4: Are there significant differences in the change-proneness and
bug-proneness of code entities involved in the different types of fre-
quent change propagation channels?

• RQ5: Which code entities are frequently involved in the change prop-
agation channels? Are the involved files for these code entities more
bug-prone?

RQ1 helps us to confirm the necessity of considering long-term
hanges as well as co-changes in revealing change propagation channels.
2

Q2 focuses on which types of relationships frequently propagate w
hanges and play the role of change propagation channels. RQ3 and
Q4 enhance our understandings of the change propagation channels

rom the perspectives of the maintenance effort, in terms of the change
ime intervals, the change-proneness and the bug-proneness. RQ5 aims
t the usefulness of the change propagation channels in identifying the
ode entities that are more likely to introduce bugs.

We implemented a tool called CPCMiner and conducted an empirical
tudy with five medium-size and actively-maintained open-source Java
rojects from the Apache community to answer the research questions.
he findings are as follows:
(1) Long-term changes widely exist just as co-changes do, imply-

ing the necessity of considering long-term changes for change
propagation analysis.

(2) Only a small number (i.e. 40) of types of change propagation
channels, consisting of three or four code entities, cover most
(over 98%) cases of code change propagation, showing the ex-
istence of frequent change propagation channels (FCPCs). The
FCPCs with an unchanged intermediate code entity (i.e., Type-0)
are more common than those with a changed intermediate code
entity (i.e., Type-1).

(3) The Type-0 FCPCs typically indicate more time spent on the
involved changed code entities with comparison to the Type-1
FCPCs, in terms of significantly longer time intervals between the
code changes in the channels.

(4) Code entities involved in the Type-0 FCPCs do not show more
change-prone, in terms of the number of commits touching the
code entities, than those in the Type-1 FCPCs. Moreover, a small
proportion of code entities frequently appear in the FCPCs, and
the involved files for these code entities contribute to a project’s
bug-proneness.

(5) We observe, in a case study on the changes of the code entities
involved in the revealed FCPCs, that about 90% of the changes
in the different commits covered by the FCPCs are relevant with
regard to the semantics of the changes. This result indicates
potential help for developers to understand the range and quality
risks of the change impacts from given source code changes.

The findings in our study show that change propagation channels are
helpful in program comprehension and software maintenance. The core
contribution of this paper is (1) the concept of change propagation
channel which can be used to represent the relationship types between
code entities that frequently propagate changes within a period of time
and a range of space. (2) a novel graph representation of the code
changes, which can be used to capture the relevant code changes within
both co-changes and long-term changes. (3) a graph-based approach to
mine the change propagation channels. (4) a small number (i.e. 40)
of types of change propagation channels which serve as an empirical
evidence on how code changes propagate through these channels in
both co-changes and long-term changes, and (5) a dataset that includ-
ing entity-level software relationship graphs and change information
from 5,032 versions of five well-maintained projects.

The rest of the paper is structured as follows. Section 2 describes an
example. Section 3 formulates our research problem. Section 4 details
our approach. Section 5 reports the answers of the research questions.
Section 6 presents in-depth reflections based on the findings. Section 7
discusses the possible applications. Section 8 discusses the threats to
validity. Section 9 summarizes related works. Section 10 concludes our
work and presents possible research directions.

2. Running example

We present an example that the source code changes propagate in
both co-changes and long-term changes. The maintenance task of this
example was to ‘‘add ALPN support for JSSE with Java 9’’.1 in Tomcat

1 ALPN is the abbreviation for Application Layer Protocol Negotiation,
hich is a new feature in protocol-based network communication.

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.

T
b
a
r
w

c
t
p
f
n
c

a
J
n
p
a

c
t
t
p
r

Fig. 2. An example of maintenance task in Tomcat.
m
a
s
c
m
c
c
t
s

hree of the commits serving for this task are depicted in Fig. 2, with a
rief introduction of the changes in the source code (the left part) and
graph representing the relationships between the code entities (the

ight part). Note that there are other commits between these commits,
hich are not closely related to the given maintenance task.

In the first commit (1955fee), the developer added a new parameter
lientRequestedApplicationProtocols in the signature of

he method createSSLEngine in the file AbstractJsseEnd-
oint.java, and the two methods that call createSSLEngine

rom other two files were also co-changed. However, the developer did
ot handle the newly-added parameter in the method
reateSSLEngine in this commit.

In the second commit (d4fb4f8) five days later, the developer
dded a method named setApplicationProtocols in the class
reCompat and its subclass Jre9Compat, respectively. Yet we did
ot find any relations between the newly-added method setAp-
licationProtocols and the previously changed method cre-
teSSLEngine.

In the third commit (5ac9eaf) one and a half days after the second
ommit, the developer finally updated the method createSSLEngine
o handle the parameter clientRequestedApplicationPro-
ocols added in the first commit by calling the method setAp-
licationProtocols added in the second commit. Till then, the
elationship path of method call was established.
3

In this example, we find that (1) the source code changes imple-
enting the new feature are related but separated in different commits,

nd (2) the commits span a period of time in which some commits
erving for other purposes exist, and (3) the propagation of code
hanges could occur in co-changes (e.g., in the first commit, the caller
odified the way the method was called when the signature of the

allee method was changed), or in long-term changes (e.g., the code
hanges in the third commit were obviously affected by the previous
wo commits), and (4) the related source code changes are linked by
tructural dependencies such as Extend and Call.

Based on the above observations, it can be concluded that capturing
change propagation channels is not an easy task. We need to capture
the relevant source code changes across multiple commits while filter-
ing out other irrelevant code changes. Although the commit messages
can serve as an important criterion for filtering relevant commits, a
large amount of incomplete or ambiguous messages greatly disrupts
the accuracy of filtering. In this example, the fine-grained relationships
between changed code entities seem to indicate the possibility of cap-
turing the relevant code changes. Therefore, we explore the approach
for capturing change propagation channels based on the fine-grained

relationships between changed code entities.

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.

f
t

a
r

c

t
s
w
s
c

C
G
f

g
s
p

4

c
e

4

p
c
m
a
M
m
v
t

i
2
a
t
f
e
i
g
c

a
a
f
o
l
i

4

i
s
t
o
2
t
e

3. Change propagation channel

A change propagation channel (CPC) is a path of two code en-
tities linked by two relationships with one or two intermediate code
entities,2 along which changes made to the code entity at one end are
frequently propagated to the code entity at the other end. We use a code
entity3 to represent a class, a method, or a variable (Ren et al., 2004).
The relationship types include nine types of structural dependencies,
the entity-contain relation, and code clone relation, which will be
elaborated in Section 4.1.2.

In this work, we consider the minimal case of a CPC, in which the
contained code entities cross three files with two types of relationships.
This is a balanced decision on the generality and computational fea-
sibility. If the CPC crosses only two files, the channel would be too
short to effectively reveal the inherent characteristics of cross-file code
change propagation. If the CPC crosses four or more files, the potential
combinations of code entities and relationships could be vast, resulting
in complex propagation paths that may become challenging to reveal.
Moreover, we do not specifically emphasize the directionality of change
propagation. The directionality of the relationships does not directly
indicate the directionality of change propagation. It allows us focus
on establishing connections between the changed code entities, making
our mining work more feasible and explainable.

A changed code entity in the channel is denoted as CE; an unchanged
code entity is denoted as UE. The two ends of a CPC are two changed
code entities (represented by two CE placeholders), and the interme-
diate code entity is either changed or unchanged (represented by a
CE/UE placeholder).4 The types of the linking relationships in the
channel are important because we assume that the relationship types
could be a potential explanation of the change propagation.

We denote a CPC by the change status (𝙲𝙴, 𝚄𝙴) of the involving en-
tities as the nodes and the types of the linking relationships (i.e. Call)
as the edges. For example, the CPC 𝐶𝐸

CALL
←←←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

CALL
←←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 means

that the changes in two entities (the CEs at the two ends) are usually
related typically for the reason that both of them call an intermediate
entity that usually do not change.

Our aim is to find frequently recurring paths of code change prop-
agation. To do this, we have to model the code changes and the
relationships between the changed code entities as a relationship graph.
Due to the complexity of the interrelationship among code entities,
we limit the range of change impacts by space, in terms of k-hop
relationships, and time, in terms of limited time. Thus, we propose a
spatial–temporal window based approach for extracting the changes
and the relations between the changed code entities, in the favor of
computational feasibility. After that, we formulate the change prop-
agation channels revealing problem as a frequent subgraph mining
problem.

4. Approach

The overview of our approach is sketched in Fig. 3. The input is a
Git repository containing the development history of a software project,
and the output is a set of CPCs frequently recurring in the history. The
approach consists of following three main steps:

Step 1: Data Preprocessing . We extract the changed code entities
and construct the software relationship graphs (SRGs) for every commit
to provide complete code changes and SRGs dataset (Section 4.1).

2 Two intermediate code entities mean that they are in a class or file. We
ormulate this situation with consideration of the possibility that changes in
he same class or file may be transitive to change impacts (See Section 4.3).

3 Interfaces and enumerations are all regarded as classes. Inner classes and
nonymous classes are considered as part of their owning classes. The variable
epresents the member variable or class variable of the class.

4 The intermediate code entities are denoted as CE if any of them are
4

hanged.
Step 2: Spatial–Temporal Window Processing . For every commit
hat satisfies certain criteria (i.e., the core commit), we first establish a
patial–temporal window (ST-Window), i.e., a limited time and space
indow, and then construct the Spatial–Temporal Change Relation-

hip Graph (ST-CRG) by collecting the changed code entities and
orresponding relationships within the ST-window (Section 4.2).

Step 3: Graph Transformation and Mining . After gaining all ST-
RGs, we transform every ST-CRG into a Change Propagation Channel
raph (CPC-G) by reverting the vertices and edges, and then mine

requent CPCs with a frequent subgraph mining algorithm (Section 4.3).
Although our approach is adaptable to other programming lan-

uages by applying corresponding language-specific parsers, we aim at
oftware projects written in Java for our tool implementation in this
aper.

.1. Step 1: Data preprocessing

The goal of this step is to extract the changed code entities and
onstruct a SRG for every commit (i.e., the code snapshot resulting from
ach commit). These individual SRGs collectively form the SRG dataset.

.1.1. Step 1.1 extracting changed code entities
Code entities could be changed at a commit operation. As with

rior work (Ren et al., 2004), we define the type of changes to the
ode entities, including Addition, Deletion, andModification. Specifically,
odifications to a class refer to changes in the class inheritance hier-

rchy, such as changing the definition of parent classes or interfaces.
odifications to a member method include changes in the accessibility
odifier, method body or method signature. Modifications to a member

ariable include changes in the accessibility modifier, variable type or
he initialization statement.

Although various ways for extracting changes of code entities ex-
st (Xing and Stroulia, 2005; Fluri et al., 2007; Asaduzzaman et al.,
013; Falleri et al., 2014), we employ CLDiff (Huang et al., 2018),
n abstract syntax tree (AST) based code differencing tool, to ex-
ract changed code entities in commits because CLDiff aggregates the
ine-grained changes at the statement-level and is well-balanced in
fficiency and precision. Given a commit, CLDiff produces the changes
n the versions before and after the commit. The changes are fine-
rained at the AST-node level, and then we group them to present the
hanges in classes, member methods, and member variables.

A list of the changed code entities (𝑐𝑒𝑠𝑖 for 𝑐𝑜𝑚𝑚𝑖𝑡𝑖) is then gener-
ted. Meanwhile, we also identify the list of changed files (𝑐𝑓𝑠𝑖), where
t least one code entity is changed. Note that the criteria of a changed
ile is stricter than that of the version control systems because changes
utside of class are not considered since they are not relevant to the
ogic of the code. The changes of blanks, empty lines, and comments
n the class are not considered, either.

.1.2. Step 1.2 constructing software relationship graph dataset
In this work, we consider eleven types of code entity relationships,

ncluding nine types of structural dependencies (Pan et al., 2021), the
tructural containing relationship, and the code clone relationship, for
he reason that these relationships are most likely to convey change
r bug propagation as reported in previous works (Oliva and Gerosa,
015; Cui et al., 2019; Mondal et al., 2019). A list of the relationship
ypes is as follows. Note that the list is not exhaustive but could be
xtended with other types of relationships as required.

• Extend (EXT): If class A inherits from class B via keyword ‘‘Ex-
tends’’, then there is a directed edge from class A to class B to
denote their EXT relationship.

• Implements (IMPL): If class A realizes interface B via keyword
‘‘Implements’’, then there is a directed edge from class A to class
B to denote their IMPL relationship.

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.
Fig. 3. An Overview of CPCMiner.
• Member Variable (MVAR): If class A declares a member variable
b with type of class B, then there is a directed edge from the
variable b to class B to denote their MVAR relationship.

• Access (ACC): If one member method A.m or member variable
A.a accesses another member variable A.b or B.b, then there is a
directed edge from method A.m or variable A.a to variable A.b or
B.b to denote their ACC relationship.

• Call (CALL): If one member method m calls another member
method n, then there is a directed edge from method m to method
n to denote their CALL relationship.

• Parameter (PAR): If one member method m has at least one
parameter with type of class B, then there is a directed edge from
method m to class B to denote their PAR relationship.

• Create (CRE): If class B is created in member method m or
member variable b, then there is a directed edge from method
m or variable b to class B to denote their CRE relationship.

• Local Variable (LVAR): If one member method m declares a local
variable with type of class B, then there is a directed edge from
method m to class B to denote their LVAR relationship.

• Return Type (RET): If one member method m has a return type
of class B, then there is a directed edge from method m to class B
to denote their RET relationship.

• Contain (CON): If one method m or variable a is the member of
class A, then there is a directed edge from class A to method m
or variable a to denote their CON relationship.

• Clone (CLO): If one member method m clones another member
method n, then there is a bidirectional edge between method m
and n to denote their CLO relationship.

We are now ready to construct the software relationship graph (SRG)
dataset.

Definition 1. SRG is a directed graph: 𝑆𝑅𝐺 = (𝑉 , 𝐸) where the
vertices (𝑉) are code entities and the edges (𝐸) are relationships
between code entities. Multiple edges are allowed if there are more
than one relationship between two code entities. Each vertex has a label
indicating the type of the code entity (i.e., Class, Method and Variable),
while each edge has a label indicating the type of the relationship (11
types, such as EXT, IMPL, CALL, etc.). A SRG dataset is a set of SRGs.

The relationships are extracted from each commit. For structural
dependencies and contain relationship, we enhance an open-source
static analysis tool, Depends5, to support dependency types such as EXT,
ACC and MVAR and to better incorporate the dependency extraction
process in our analysis. For code clone relationships, we employ a
code clone detection tool named SAGA (Li et al., 2020) to extract
method-level clone relationships. The similarity threshold is set to
0.7, a typical value adopted in literatures (Li et al., 2020; Sajnani
et al., 2016) with balanced precision and recall. Based on the code
entities and relationships extracted, an SRG is constructed for each

5 https://github.com/multilang-depends/depends.
5

commit. To ensure the quality of the relationships, three authors with
rich Java development experiences investigated 500 randomly-selected
cases, including 400 cases about structural dependencies and 100 cases
about clone relationships. They confirmed over 99% correctness of the
relationships.

4.2. Step 2: Spatial-temporal window processing

The goal of this step is to process every commit that satisfies certain
criteria (i.e., the core commit) one by one, and construct the Spatial–
Temporal Change Relationship Graphs (ST-CRGs) by collecting the
changed code entities and corresponding relationships within limited
time and space (i.e., ST-Window).

Fig. 4 illustrates this construct process. We first determine a time
window which covers a number of commits before and after the core
commit (Section 4.2.1). For convenience, we call the changed code
entities in the core commit core entities. Then, we establish mappings
between the code entities in the SRGs of the adjacent commits in the
time window so that the core entities are traced in all the commits
in the time window (Section 4.2.2). Finally, starting from the core
entities, we construct the spatial–temporal change relationship graph
(Section 4.2.3).

We recognize a commit as a core commit which satisfies the fol-
lowing criteria: (1) Not all changed files are test files; (2) At least one
code entity is changed; and (3) The number of changed files is no more
than a preset threshold 𝑁 . The first two constraints ensure that the
changes in the core commit are the source of change impacts that are
of interest. We currently do not consider the change impacts on and
from the test code, which is left for future work. The third constraint
ensures that the commit under consideration does not touch too many
files. A commit that has too many changes are more likely to be a
house-keeping commit (Zimmermann et al., 2005; Moonen et al., 2016)
and may impose a negative effect on the change propagation analysis.
Moreover, the qualified core commits that are committed by the same
developer within 𝑜𝑛𝑒 hour6 are regarded as a single commit operation
because it is very likely that the changes are closely related already.

4.2.1. Step 2.1: Determining the time window
The time window is a period of time that covers a number of commits

before and after the core commit. The definition of time window is
different from the previous works (Herzig and Zeller, 2011; Jaafar
et al., 2014, 2011; Feng et al., 2019). This is because we notice that
the changes in the core commit could be impacted by the previous
changes, while also impacting the later changes. Therefore, we consider
the changes before and after the core commit so that we could capture
the long-term changes related to the core entities.

The size of the time window (in days or hours) is decided based on
both the length of time and the number of commits. Particularly, we set
the default size of the time window as the average length of time per

6 Section 5.1 will discuss the reason why we choose such a time of period.

https://github.com/multilang-depends/depends

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.

1
𝐷
t
t
c
s
o
a
t
b
t
a
c

E
t
t
T
s

Fig. 4. An example of ST-CRG construction.
5 commits in the whole development history. Once the default size of
days is set, two time periods of 𝐷∕2 days are set before and after

he core commit to get the full time window. Meanwhile, we also limit
he number of commits up to 15. If there are more than 15 commits
overed by the time window, we then drop out the commits from the
tart and end points of the time window proportionally to the numbers
f commits before and after the core commits. For example, if there
re 20 commits covered by a time window, among which 11 are before
he core commit, 8 are after the core commit, then we drop 3 commits
efore and 2 commits after the core commit, respectively, such that the
ime window contains no more than 15 commits. Such settings prevent
huge number of changed code entities in too many commits that may

ause infeasible change propagation analysis.

xample. The Step 2.1 in Fig. 4 demonstrates the determination of
he time window for core commit 𝐶5. The time window is shown as
he dashed rectangle, covering 4 commits (including the core commit).
hen we obtain the SRGs of these commits from SRG dataset. In this
tep, all changed code entities are recognized, as shown in gray circles
6

in Fig. 4. Unchanged code entities are shown in blue. The circular nodes
represent code entities. To facilitate reading, we use rounded boxes
to represent classes in Step 2.1 and Step 2.2. The arrows represent
relationships between code entities. The newly-added relationships are
in red. We omit the types of the relationships in the figure only for
simplicity.

4.2.2. Step 2.2: Code entity mapping
In this step, we establish the mappings between any two adjacent

commits to align the code entities. The mappings build up the evolution
trace of the code entities along the commits in the time window. In
order to do this, we first use the built-in mechanism of Git to establish
the file-level tracing. File moving and renaming are also tracked by
Git by default. Then we use CLDiff, an AST-based code differencing
tool, to establish the mappings between code entities in two adja-
cent commits by AST-based matching technology. The classes can be
mapped according to the mapped files and classes, and the variables
can be mapped by the name along with the class name. The mapping
of methods is established by tracking method line number changes in

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.

𝐶
s

4

r
c
c
i
p
S
t
t
c
c
c

D
w
r
e
(
t
T
t
i
h
u
S
t

c
e
T
3
r
v
(
i
e

t
t
e
s

E
d
f
2

c
C
C
c

S
h
a
a

T
o
t
e
i
8
c
r

1
e
c

c
a

4

m
p
c
i
d
o

successive commits. Using the AST-based matching technology could
effectively avoid the situation of changing the method signature, such
as method renaming, parameters adding or deleting, etc., which greatly
improves the accuracy of method tracking. Two authors with rich Java
development experiences investigated 200 randomly-selected cases,
and confirmed over 95% correctness of the mapping.

Based on the mappings, we assign a globally unique index for each
mapped entity to distinguish the entities across different commits in
the time window. All code entities in each commit, either changed or
unchanged, are all traced by the mappings. Particularly, if a code entity
is deleted, the entity in the previous commit is mapped to a null entity;
if a code entity is added, the new entity is assigned a new unique index.

Example. The Step 2.2 in Fig. 4 exemplifies the code entities that
are traced between adjacent commits, labeled with the same identity
number. We omit the classes other than a-d in commits 𝐶4, 𝐶5 and
6 and the classes other than e-f in commit 𝐶7 only for the purpose of
implicity. All the code entities in these files are traced in this example.

.2.3. Step 2.3: ST-CRG construction
Spatial–Temporal Change Relationship Graph (ST-CRG) is a graph

epresentation for the range of potential change propagation from the
ore entities within the time and space window. The range of potential
hange propagation is defined as the code entities that (1) are changed
n the commits in the time window and (2) are within 𝑘 hops along the
ath of relationships from the core entities in the SRG (space window).
pecifically, given a core commit and the corresponding time window,
he ST-CRG contains the changed code entities in the core commit and
he changed code entities, in the time window, within k hops to the
ore entities. The ST-CRG also contains the code entities that are not
hanged in the time window if they are on the k-hop path between the
ore entity. Formally we define ST-CRG as follows.

efinition 2. Given a core commit 𝑐 and the corresponding time
indow 𝐷, the ST-CRG is a directed graph 𝐺𝑤

𝑐 =(𝑉 , 𝐸), where 𝑉
epresents the code entities and 𝐸 represents relationships between the
ntities. Each vertex has a label indicating the type of the code entity
i.e., Class, Method and Variable), and each edge has a label indicating
he type of the relationship (11 types, such as EXT, IMPL, CALL, etc.).
he vertices include three subsets of code entities: (1) the core entities
hat are changed in the core commit; (2) the changed non-core entities
n the SRG of each non-core commit in the time window 𝑤, within 𝑘
ops to the core entities (mapped from the core commit); and (3) the
nchanged entities that are on the shortest paths between vertices in
ubset (1) and Subset (2). Multiple edges are allowed if there are more
han one relationship between two code entities.

The procedure for ST-CRG construction for a time window 𝑤 of a
ore commit 𝑐 is described in Algorithm 1. We first obtain the core
ntities in the commit 𝑐 as the initial vertices of the ST-CRG (line 2).
he initial edges are the relationships between the core entities (line
). Then, for each non-core commit in 𝐷, we find the vertices that
epresent the changed code entities (line 6) and check whether these
ertices are within 𝑘 hops from a core entity in the SRG of the commit
line 9–10). If so, we add the vertices to the ST-CRG for each code entity
n the shortest path from the changed entity (inclusive) to the core
ntity (line 11–12). Otherwise, the changed code entities are discarded.

In this procedure, all changed code entities in 𝑤 that are within
he range of 𝑘-hop to the core entities in each SRG and within the
ime window 𝑤 are included in the ST-CRG. Therefore, an ST-CRG
ssentially embody the changes related to the core entities in a given
patial–temporal window.

xample. The lower part of Fig. 4 illustrates the construction proce-
ure of the ST-CRG, starting from the core commit 𝐶5 (Step 2.3(a))
ollowed by commits 𝐶4 (Step 2.3(b)), 𝐶6 (Step 2.3(c)), and 𝐶7 (Step
7

.3(d)). In this example, the range of impact threshold 𝑘 is set to 2. r
Algorithm 1: Generate the ST-CRG from a time window of a
core commit

Input: 𝑐𝑜𝑟𝑒𝑐𝑜𝑚𝑚𝑖𝑡, a core commit
𝑐𝑜𝑚𝑚𝑖𝑡𝑙𝑖𝑠𝑡, the commits list in the time window
𝑆𝑅𝐺𝑠, the SRGs for the commits list

Output: A ST-CRG, 𝑠𝑡-𝑐𝑟𝑔 = (𝑉 , 𝐸)
1 Initialize a directed graph 𝑠𝑡-𝑐𝑟𝑔 = (𝑉 , 𝐸)
2 Add core entities to 𝑉
3 Add relationships between core entities to 𝐸
4 foreach commit 𝑐 in 𝑐𝑜𝑚𝑚𝑖𝑡𝑙𝑖𝑠𝑡 do
5 Let 𝑀𝑎𝑝𝑝𝑒𝑑𝐶𝑜𝑟𝑒𝐸𝑛𝑡𝑖𝑡𝑦𝑐 be the set of code entities in 𝑐 that

are mapped to the core entities
6 Let 𝑐𝑒𝑠𝑐 be the set of changed entities in commit 𝑐
7 foreach 𝑒 in 𝑐𝑒𝑠𝑐 do
8 foreach 𝑒𝑐𝑜𝑟𝑒 𝑖𝑛 𝑀𝑎𝑝𝑝𝑒𝑑𝐶𝑜𝑟𝑒𝐸𝑛𝑡𝑖𝑡𝑦𝑐 do
9 if 𝑒 and 𝑒𝑐𝑜𝑟𝑒 are not in the same file then
10 if exists a k-hop shortest path 𝑃 between 𝑒 and

𝑒𝑐𝑜𝑟𝑒 in 𝑆𝑅𝐺𝑐 then
11 𝑉 = 𝑉 ∪ all vertices in 𝑃
12 𝐸 = 𝐸 ∪ all edges in 𝑃
13 end
14 end
15 end
16 end
17 end
18 return 𝑠𝑡-𝑐𝑟𝑔

First, the changed code entities in Commit 𝐶5 (Step 2.3(a)), or
ore entities, 1, 2, and 7, are added to the ST-CRG as vertices. Since
lass a contains methods 1 and 2 and Class b contains methods 7, the
ON relationships are added as the edges correspondingly. Then, other
ommits in the time window are processed sequentially.

In Commit 𝐶4 (Step 2.3(b)), the changed code entities are 2 and 6.
ince code entity 6 depends on core entity 2, and is located in the two-
op range with core entity 2, code entity 6 is a potential impact entities
nd added into ST-CRG. Meantime, the CALL and CON relationships are
dded as edges into graph.

In Commit 𝐶6 (Step 2.3(c)), the changed code entities are 5 and 8.
he code entity 5 has a CLO relationship with the core entity 1, and is
ne-hop away (within the two-hop range). Thus code entity 5 is added
o the graph as vertex 5. Code entity 8 is two-hop away from the core
ntity 2, also in the valid range of impact. Thus, both the code entity 8
s also added as a vertex in the graph. Also note that, since code entity
is related to code entities 2 via code entity 3 as the intermediate, the

ode entity 3 is also added even if it is not changed in Commit 𝐶6. The
elationships EXT, CALL, ACC and CON are added correspondingly.

In Commit 𝐶7 (Step 2.3(d)), the changed code entities are 10 and
2. However, both entities are out of the two-hop range from the core
ntities. Thus, they are not added to the ST-CRG, so the graph is not
hanged.

After all commits in the time window are processed, the ST-CRG is
onstructed as in the lower right part of Fig. 4. For each core commit,
n ST-CRG is constructed.

.3. Step 3: Graph transformation and mining

The goal of this step is to find the recurring CPCs, which can be
odeled as a frequent subgraph mining problem. In each ST-CRG, a
otential CPC starts from a changed code entity and ends with another
hanged code entity. All relationship types and the intermediate entities
n the path are recognized as part of the potential CPC. Specially, we
o not consider the unique IDs of each vertex but only keep the changed
r unchanged status of each vertex and the edges that represent the

elationship types.

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.

a
l
⟨

T
C
c
𝑒
C
b
n
a

p

Table 1
The edge direction labels (𝐿1) of CPC-G.

ID 𝐿1 Description

1 A Afferent: 𝑒1
𝑆𝐷
←←←←←←←←←←←←←→ 𝑒0

𝑆𝐷
←←←←←←←←←←←←←← 𝑒2

2 E Efferent: 𝑒1
𝑆𝐷
←←←←←←←←←←←←←← 𝑒0

𝑆𝐷
←←←←←←←←←←←←←→ 𝑒2

3 AE Afferent and Efferent: 𝑒1
𝑆𝐷
←←←←←←←←←←←←←→ 𝑒0

𝑆𝐷
←←←←←←←←←←←←←→ 𝑒2 or 𝑒1

𝑆𝐷
←←←←←←←←←←←←←← 𝑒0

𝑆𝐷
←←←←←←←←←←←←←← 𝑒2

4 AC Afferent and Clone: 𝑒1
𝑆𝐷
←←←←←←←←←←←←←→ 𝑒0

𝐶𝐿𝑂
←←←←←←←←←→ 𝑒2 or 𝑒1

𝐶𝐿𝑂
←←←←←←←←←→ 𝑒0

𝑆𝐷
←←←←←←←←←←←←←← 𝑒2

5 EC Efferent and Clone: 𝑒1
𝑆𝐷
←←←←←←←←←←←←←← 𝑒0

𝐶𝐿𝑂
←←←←←←←←←→ 𝑒2 or 𝑒1

𝐶𝐿𝑂
←←←←←←←←←→ 𝑒0

𝑆𝐷
←←←←←←←←←←←←←→ 𝑒2

6 CC Clone relationships: 𝑒1
𝐶𝐿𝑂
←←←←←←←←←→ 𝑒0

𝐶𝐿𝑂
←←←←←←←←←→ 𝑒2

Note: SD = structural dependence CLO = clone relationship.

However, directly mining the frequent subgraphs of the ST-CRG is
challenging. First, the ST-CRG is a directed graph, where each vertex
and edge have different labels. Due to the presence of bidirectional
edges representing clone relationships and the allowance of multi-
ple edges between code entities, it is a challenging task to perform
subgraph mining on such directed graphs. Second, we assume the
possibility that changes in the same class or file are transitive to change
impacts. For example, a method m in class A possibly has an internal
relationship or impact on other code entities in class A so that the latter
code entities may have an external impact on other code entities in
another file. In this case, directly mining the ST-CRG requires more
preprocess on the Contain relationships and the code entities that are
in the same file.

Based on this observation, we opt not to mine frequent subgraphs in
the ST-CRGs directly but to develop a new graph representation, called
CPC Graph (CPC-G), which is an undirected graph transformed from
the ST-CRG (Section 4.3.1). Based on the transformed CPC-Gs, we then
find the recurring CPCs by frequent subgraph mining (Section 4.3.2).
We detail these two steps in the following subsections.

4.3.1. Step 3.1 transforming ST-CRGs into a CPC-G dataset
In this step, we transform each ST-CRG into a CPC-G. Recalling the

definition that the CPC is a path of two code entities linked by two
relationships with one or two intermediate code entities, in which the
contained code entities cross three files with two types of relationships.
In other words, a case of the CPC is a minimal ST-CRG which consists of
only three or four code entities and two relationships. Here, assuming
that 𝑒0 represents the intermediate code entity,7 𝑒1 and 𝑒2 represent
the other two ends code entities, respectively. The relationship between
code entities 𝑒0 and 𝑒1 is represented as ⟨𝑒0, 𝑒1⟩, while the relationship
between code entities 𝑒0 and 𝑒2 is represented as ⟨𝑒0, 𝑒2⟩.

Such a minimal ST-CRG is transformed to the minimal CPC-G. Each
minimal CPC-G contains only two vertices and one edge, in which
the two vertices are transformed from the two relationships ⟨𝑒0, 𝑒1⟩
and ⟨𝑒0, 𝑒2⟩ in the ST-CRG, and the label of each vertex represents the
relationship type. The edge connecting the two vertices reflects the
change status of the entity 𝑒0 and the directions of the two edges ⟨𝑒0, 𝑒1⟩
nd ⟨𝑒0, 𝑒2⟩. In order to capture this information, we use a direction
abel (𝐿1) to represent the directions of the relationships ⟨𝑒0, 𝑒1⟩ and
𝑒0, 𝑒2⟩ with respect to the entity 𝑒0. The direction labels are shown in
able 1, where SD represents any type of structural dependencies and
LO represents the clone relationship in the ST-CRG. We also use a
hange state label (𝐿2) to represent whether the intermediate code entity
0 is changed (CE) or not (UE). When the entity 𝑒0 is represented as
E, it indicates that at least one of the intermediate code entity has
een changed. Therefore, each edge in the CPC-G contains two labels,
amely the direction and the change state. Formally, we define a CPC-G
s follows.

7 There might be two intermediate code entities involved in change
ropagation, in which case 𝑒 represents two code entities.
8

0 c
Definition 3. A CPC-G, transformed from an ST-CRG, is an undirected
graph (𝑉 , 𝐸), where each vertex 𝑣 in 𝑉 is a relationship type with a
label of a relationship type (e.g., CALL, ACC) in the ST-CRG, and each
edge 𝑒 in 𝐸 ⊆ 𝑉 × 𝑉 is undirected and labeled as 𝐿1@𝐿2 where 𝐿1 is
one of the direction labels (i.e., A, E, AE, AC, EC, and CC), and 𝐿2 is
one of the entity-change-status labels (i.e., CE and UE).

Fig. 5 illustrates six possible cases of minimal CPC-Gs where the
intermediate code entity 𝑒0 is changed (CE). There are other six cases
where the intermediate code entity 𝑒0 are unchanged, the status of
other two code entities is the same as the illustrated six cases, thus
we omit them for saving spaces. In each subfigure, the left part is the
ST-CRG and the right part is the corresponding CPC-G. In the ST-CRGs,
the gray circles represent the changed entities, and the arrows represent
relationships between the code entities.

Algorithm 2: Generate the CPC-G from a ST-CRG
Input: a ST-CRG represented by (𝑉 𝑆𝑇−𝐶𝑅𝐺, 𝐸𝑆𝑇−𝐶𝑅𝐺)
Output: a CPC-G, 𝑐𝑝𝑐-𝑔 = (𝑉 𝐶𝑃𝐶−𝐺, 𝐸𝐶𝑃𝐶−𝐺)

1 Let 𝑒𝑑𝑔𝑒𝑖𝑛𝑑𝑒𝑥𝑙𝑖𝑠𝑡 store the edge indexes of 𝐸𝑆𝑇−𝐶𝑅𝐺, besides
CON edges

2 Initial an undirected graph 𝑐𝑝𝑐-𝑔 = (𝑉 𝐶𝑃𝐶−𝐺, 𝐸𝐶𝑃𝐶−𝐺)
3 foreach unordered pair of edges 𝑒𝑑𝑔𝑒𝑖 and 𝑒𝑑𝑔𝑒𝑗

(𝑒𝑑𝑔𝑒𝑖, 𝑒𝑑𝑔𝑒𝑗 ∈ 𝐸𝑆𝑇−𝐶𝑅𝐺) do
4 Let 𝑖𝑛𝑑𝑒𝑥𝑖 represent the edge index of 𝑒𝑑𝑔𝑒𝑖
5 Let 𝑖𝑛𝑑𝑒𝑥𝑗 represent the edge index of 𝑒𝑑𝑔𝑒𝑗
6 if 𝑒𝑑𝑔𝑒𝑖 and 𝑒𝑑𝑔𝑒𝑗 share only one common file then
7 Let 𝑓0 represent the common file
8 Let 𝑒01 represent one code entity of 𝑒𝑑𝑒𝑔𝑖 in 𝑓0
9 Let 𝑒1 represent the other code entity of 𝑒𝑑𝑒𝑔𝑖
10 Let 𝑒02 represent one code entity of 𝑒𝑑𝑒𝑔𝑗 in 𝑓0
11 Let 𝑒2 represent the other code entity of 𝑒𝑑𝑒𝑔𝑗
12 if (𝑒1 and 𝑒2 are all changed)
13 and (not exist direct relation between 𝑒1 and 𝑒2)
14 and (exist core entity in 𝑒01, 𝑒02, 𝑒1 and 𝑒2) then
15 𝑛𝑜𝑑𝑒𝑖 = findVertexByIndex(𝑖𝑛𝑑𝑒𝑥𝑖)
16 𝑛𝑜𝑑𝑒𝑗 = findVertexByIndex(𝑖𝑛𝑑𝑒𝑥𝑗)
17 if 𝑛𝑜𝑑𝑒𝑖 is not found then
18 𝑛𝑜𝑑𝑒𝑖 = a new vertex, indexed by 𝑖𝑛𝑑𝑒𝑥𝑖, labeled

by the relation type of 𝑒𝑑𝑔𝑒𝑖
19 Add 𝑛𝑜𝑑𝑒𝑖 to 𝑉 𝐶𝑃𝐶−𝐺

20 end
21 if 𝑛𝑜𝑑𝑒𝑗 is not found then
22 𝑛𝑜𝑑𝑒𝑗 = a new vertex, indexed by 𝑖𝑛𝑑𝑒𝑥𝑗 , labeled

by the relation type of 𝑒𝑑𝑔𝑒𝑗
23 Add 𝑛𝑜𝑑𝑒𝑗 to 𝑉 𝐶𝑃𝐶−𝐺

24 end
25 𝑒𝑑𝑙= decideEdgeLabels(𝑒𝑑𝑒𝑔𝑖, 𝑒𝑑𝑒𝑔𝑗)
26 Add an undirected edge to 𝐸𝐶𝑃𝐶−𝐺, with label 𝑒𝑑𝑙

to connect 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒𝑗
27 end
28 end
29 end
30 return 𝑐𝑝𝑐-𝑔

The procedure of generating CPC-Gs is formulated as Algorithm
2. In the ST-CRG, we consider any two edges (i.e., relationships) to
determine whether they could be transformed into a CPC-G with the
following four rules: (1) the two edges share only one common file,8
that is, there are three files in all related to these two edges (line 6);
(2) the two code entities, 𝑒1, 𝑒2, in the two non-common files must be
changed (line 12); (3) there are no direct relationships between the

8 Though there is no file node in ST-CRG, every code entity belongs to one
ertain file.

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.

e
t
a

E
C
l
e
𝑑

i
T
c
C
w
e

Fig. 5. The examples of transforming ST-CRGs into CPC-Gs.
o
t
J
W
m
s
d
h
p

m
d
t

T
i
i
t
h
s
(

s
o
I
T
s
d

Fig. 6. An example of CPC-G construction.

code entities, 𝑒1, 𝑒2, in the two non-common files (line 13); (4) the two
dges cover at least one core entity (line 14); If all rules are satisfied,
he two edges are then transformed into two vertices in the CPC-G, and
n edge linking the two vertices is created.

xample. Fig. 6 illustrates the transformation. Fig. 6(a) is the ST-
RG; Fig. 6(b) is the transformed CPC-G. In ST-CRG, each edge is

abeled by an ID followed by the type of the relationship. In CPC-G,
ach node corresponds to an edge in ST-CRG. For example, the node
1 and 𝑑5 in CPC-G comes from the pair of edges ⟨𝑑1, 𝑑5⟩ in ST-CRG.

The transformation is done because the code entities 1 and 2 are in the
same file and entities 5 and 7 are not in the same file, and the code
entities 5 and 7 are marked as changed in ST-CRG. The edge between
𝑑1 and 𝑑5 in CPC-G is labeled by (AC, CE) because 𝑑1 is a bidirectional
relationship (CLO) (the C in AC) and 𝑑5 is a directed relationship that
points inward (the A in AC) to the entity 2 from the perspective of
the file that contains code entity 1 and 2 that are changed (the CE).
Then, we traverse all these edges in pairs and finally get the CPC-G as
depicted.

4.3.2. Step 3.2 frequent subgraph mining
Based on the CPC-G dataset, we are able to mine frequent subgraphs

that represents frequent change propagation channels (FCPC). In this
work, we intend to find the minimal CPCs, meaning that any connected
subgraph containing two nodes in the CPC-G is a target subgraph.
Therefore, we set the node threshold to 2 in the subgraph isomorphism
algorithm VF2 (Cordella et al., 2004) to mine frequent subgraphs.

After mining the common CPC-G subgraphs, we can obtain the cor-
responding FCPCs. For example, assuming that 𝑑5

A@CE𝑑2 in Fig. 6(b)

s a frequent subgraph, we then find a FCPC: 𝙲𝙴
CALL
←←←←←←←←←←←←←←←←←←←←←→ 𝙲𝙴

CALL
←←←←←←←←←←←←←←←←←←←←←← 𝙲𝙴.

his means that a change on the intermediate code entity in this FCPC
an have an impact on all code entities that have inward (afferent)
ALL relationships. We can also find a FCPC, 𝙲𝙴

CALL
←←←←←←←←←←←←←←←←←←←←←← 𝚄𝙴

ACC
←←←←←←←←←←←←←←←←←→ 𝙲𝙴,

hich means the change in one code entity can impact another code
ntity through an unchanged code entity, where the two changed code
9

entities have relationships with the unchanged code entity through
method calls and variable access. These two cases demonstrate that
code changes can propagate through both direct relationships (when
the intermediate code entity is changed) and indirect relationships
(when the intermediate code entity remains unchanged).

5. Empirical study

In order to answer the research questions, we carry out an empirical
study on five large-scale open-source projects. In this section, we first
introduce the setup of our empirical study (Section 5.1), and then
discuss our findings for each research question (Section 5.2).

5.1. Study setup

Subject Project Selection. We choose five well-maintained Java
pen source projects sponsored by Apache Software Foundation as
he subject projects. They are: (1)Tomcat9, an implementation of the
ava Servlet, JavaServer Pages, Java Expression Language and Java
ebSocket technologies; (2)Jmeter10, a Java application designed to
easure performance and load test applications; (3)Kafka11, an open-

ource distributed event streaming platform; (4)Pinot12, a real-time
istributed OLAP datastore; and (5)Iceberg13, a core component for
igh-performance data lake solutions. The basic information of these
rojects is listed in Table 2.

Each of these projects has a long evolution history and is actively
aintained at the time of our study. They have well-maintained issue
atabases, which provide rich information about the bugs or defects
hat could be linked to the commits for code quality evaluation.

In our evaluation, we select a period of time (Study Timespan in
able 2) when the projects are comparatively stable in the architecture,

.e., no major refactoring happened. This is for the purpose of improv-
ng the mapping between code entities in adjacent commits so that
he change impact could be precisely traced if the changes repeatedly
appen. In this period of time of each project, there were almost the
ame number of commits (around 1,000) that touched source code files
none-test-files), so that we are able to do cross-project comparison.

Although we select almost the same number of commits, the corre-
ponding development history time varies due to the different density
f commits in the projects. The lowest commit density occurs in project
ceberg, containing 1,006 source-code-touching commits in 839 days.
he highest commit density occurs in project Tomcat, containing 1,002
ource-code-touching commits in 477 days. The differences in commit
ensity lead to different sizes of the time window for each project.

9 https://github.com/apache/tomcat.
10 https://github.com/apache/jmeter.
11 https://github.com/apache/kafka.
12 https://github.com/apache/pinot.
13
 https://github.com/apache/iceberg.

https://github.com/apache/tomcat
https://github.com/apache/jmeter
https://github.com/apache/kafka
https://github.com/apache/pinot
https://github.com/apache/iceberg

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.

t
l
n

a

Table 2
Subject systems.

System Full history # of
commits

of
files

KLOC Study
timespan

Study
releasespan

Days # of commits in
the timespan

of commits touching
Java files (%)

of files in
the timespan

Tomcat 03/2006-05/2022 72,470 2,560 356 01/2017-05/2018 9.0.0-9.0.8 477 1,449 1,002 (69%) 1,685-1,765
Jmeter 09/1998-05/2022 20,611 1,394 148 03/2017-04/2019 3.1.0-5.2.1 760 2,098 1,012 (48%) 1,029-1,093
Kafka 08/2011-05/2022 15,205 3,437 499 06/2018-02/2020 2.0.0-2.5.0 594 1,957 1,005 (51%) 1,281-1,604
Pinot 01/2002-05/2022 8,945 2,934 336 01/2019-07/2020 0.0.9-0.4.0 534 1,513 1,007 (67%) 2,175-2,359
Iceberg 12/2017-05/2022 2,847 1,807 357 06/2019-05/2022 0.6.0-0.13.2 839 2,148 1,006 (49%) 290-826
‘,
Threshold Selection. First, in our study time-span, about 85% of
he commits have five or fewer files changed. As we assume that
arger commits may consist of unrelated code changes, we limit the
umber of files touched in a core commit up to 𝑁 (i.e., 5). This is

conservative estimation that the change impacts from this commit are
not overwhelmingly scattered. This estimation does not necessarily
ensure the atomic of the commit (Shen et al., 2021) but could reduce
the negative effect on the change propagation analysis by the house-
keeping or tangled commits (Herzig and Zeller, 2013; Zimmermann
et al., 2005; Moonen et al., 2016).

Second, we regard the qualified core commits which are committed
by the same developer within 𝑜𝑛𝑒 hour as a single commit operation.
We do so for three reasons: (1) A developer might commit an in-
complete change or update the remaining files in a separate commit,
with the result that the code entities which are highly related via the
same change might become spread across several commits. (2) As the
developer may commit similar changes in these commits, that merging
these commits could avoid the repeated creation of ST-CDGs. (3) Sev-
eral previous works have proposed strategies to merging commits for
co-change analysis, such as grouping commits by the same developer
that happen more than once in some period of time. However, there
is currently no unified standard regarding the duration of time, with
some studies using a few minutes (Mockus et al., 2002; Zimmermann
et al., 2005; Silva et al., 2019), while others using several hours or even
days (Jaafar et al., 2014; Silva et al., 2015b). Therefore, we select 𝑜𝑛𝑒
hour as a compromise time threshold. For example, in order to address
the issue of an infinite loop14 in Tomcat, a developer committed two
distinct code changes15 within a time interval of less than one hour.
These two commits, when merged, serve as a core commit for the
creation of ST-CDG. We randomly selected 250 ST-CDGs (i.e. 50 per
project in average) involving core commits merging to check manually
the commit messages whether the core commits have highly related
changes. Two authors confirmed that over 95% of cases refer to same
or highly related maintenance task.

Third, in this study, we set the size of the time window based on
the commit density of each project and limit the numbers of commits
should be no more than 15 for computation feasibility purposes. As
different projects have different commit frequencies, we do not choose
a fixed time periods or numbers of commits as the time window.
Moreover, we set two-hops relationships as the range of change im-
pact (i.e., the space window). This is conservative estimation that the
changes in the ST-Window are more likely to be interrelated with the
core entities.

Data Preparation. We apply the three steps of our approach in each
subject project. In Step 1, we choose a graph database Neo4J for SRG
storage. The graph database is designed for efficient graph traversal and
operations, which is suitable for SRG storage and processing.

In Step 2, the ST-window settings are shown in the TW and SW
columns in Table 3. The numbers of ST-CRGs constructed for all
projects are also shown in the same table.

In Step 3, we transform each ST-CRG into a CPC-G according to
our transformation rules, and then mine frequently-occurring common

14 https://bz.apache.org/bugzilla/show_bug.cgi?id=60970.
15 Their commit hashes are ‘45c2b0f2281bf3fe24d58943d982e8b9dc38518a‘
nd ‘1516a4fbb13d87130a41cba2e738939cf74c2130‘.
10
Fig. 7. The distribution of co-changes and long-term changes in ST-CRGs.

subgraphs in the set of CPC-Gs with the frequent subgraph mining
algorithm (i.e., VF2) to obtain FCPCs. Because a change propagation
channel requires at least three code entities with two relationships,
some ST-CRGs could not be transformed into CPC-G. As listed in
Table 3, about 67%–92% of ST-SRGs are transformed for each project,
averagely 83% in total.

Reproduction data. We provide a reproduction package including
all SRGs used in our study, the graph representations as well as all
mined FCPCs.16

5.2. Findings

5.2.1. RQ1: Do the long-term changes widely exist in software maintenance
history in contrast to the co-changes?

As the actual proportion of long-term changes in software history
is difficult to directly measure, we calculate the percentage of ST-CRGs
that can be constructed by considering only co-changes as an indirect
assessment of the frequency of long-term changes. In all projects, we
constructed 263 to 561 ST-CRGs, of which approximately 10% to
31% can be constructed by considering only co-changes, as shown in
Fig. 7. This implies that approximately 69% to 90% of ST-CRGs involve
long-term changes.

To verify whether ST-CRGs do involve long-term changes, we orga-
nized five developers who had an average of about two years of Java
development experience, and randomly selected 100 ST-CRGs involving
long-term changes from all projects (i.e., about 20 ST-CRGs for each
one). Our investigation was centered on analyzing the correlation
between code entity changes within the time window of the ST-CRG,
such as whether they complete the same task or have similar or parent–
child issue related changes. As an instance, a ST-CRG was constructed,
encompassing three commits17, all of which were directly linked to

16 https://github.com/FudanSELab/cpcminer.
17 Their commit hashes are ‘11aeac2d624e88272e6a932a3b1ebea103ab1a77

‘737307506b8f14b2eccde5a44c05a4e0b2f4b1cf‘, and ‘1955fee1e3ba6fdec43d-
3717222226cbe49f19e1‘.

https://bz.apache.org/bugzilla/show_bug.cgi?id=60970
https://github.com/FudanSELab/cpcminer

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.

5
r
p

s
c
g
5
l
F
a
a
r
t

2
s
t

o

Table 3
Experimental settings and resulting graphs.

System # of commits
per day

of days per
15 commits

TW
(days)

SW
(k-hop)

of
ST-CRGs

of
files (%)

of
CPC-Gs (%)

of FCPCs
≥2 CPC-Gs ≥3 CPC-Gs ≥4 CPC-Gs ≥5 CPC-Gs

Tomcat 2.10 7.13 8 2 299 503 (28%) 201 (67%) 133 89 71 59
Jmeter 1.33 11.26 12 2 263 468 (43%) 210 (80%) 79 57 47 43
Kafka 1.69 8.87 8 2 516 904 (56%) 440 (85%) 153 127 103 89
Pinot 1.88 7.99 8 2 515 1,113 (47%) 465 (90%) 156 123 102 91
Iceberg 1.20 12.51 12 2 561 666 (81%) 515 (92%) 172 147 122 104

Total (∪) 243 203 174 144

Note: TW = time window SW = space window.
Table 4
The percentages of CPC-Gs covered by Top-n FCPCs that occur in at least two subject projects.

System # of CPC-Gs All FCPCs Type-0 FCPCs Type-1 FCPCs

Top-10 Top-20 Top-30 Top-40 Top-10 Top-20 Top-30 Top-10 Top-20 Top-30

Tomcat 201 (100%) 78% 88% 94% 95% 78% 82% 85% 36% 44% 45%
Jmeter 210 (100%) 90% 93% 96% 99% 90% 93% 95% 28% 30% 30%
Kafka 440 (100%) 93% 97% 98% 98% 93% 95% 96% 28% 30% 32%
Pinot 465 (100%) 93% 97% 98% 98% 93% 95% 96% 35% 38% 39%
Iceberg 515 (100%) 94% 97% 98% 99% 94% 97% 97% 30% 34% 37%

Average 90% 94% 97% 98% 90% 92% 94% 31% 35% 37%
,

the task concerning ALPN support. Each ST-CRG was verified by at
least two developers independently. If there was disagreement between
them, a third developer was brought in for independent verification,
and determined the final result with consideration of all results. The
results showed that the code entities in most of ST-CRGs (about 90%)
were semantically related, and their changes spanned multiple different
commits. We notice that the project Iceberg has the highest proportion
of ST-CRGs involving long-term changes. This is because that this
project is in its early stages, which is quite active and unstable, resulting
in a higher proportion of long-term changes.

This result indicates the common existence of the long-term changes
in the process of software development. Only considering co-changes
may miss quite a few related source code changes that have remote im-
pact on other code entities after a period of time. This also demonstrates
the necessity to consider long-term changes in change propagation
analysis.

Answer to RQ1: 69%-90% of ST-CRGs involve long-term changes,
which means when code change propagation occurs, the affected code
entities are changed in multiple commits. High proportions of long-
term changes imply the necessity to consider long-term changes in
change propagation analysis.

.2.2. RQ2: Do change propagation channels exist? If so, which types of
elationships between code entities frequently play the role of channels that
ropagate changes?

We obtained 201-515 CPC-Gs transformed from the ST-CRGs con-
tructed from the histories of the subject project. To find frequent
hange propagation channels (FCPCs), we mined the frequent sub-
raphs from the CPC-Gs with the support thresholds of 2, 3, 4, and
, respectively. The numbers of FCPCs mined from the CPC-Gs are
isted in the last four columns of Table 3. We found 243 distinct
CPCs in all projects when the support threshold was set to 2. We
lso found that, although the numbers of the mined FCPCs decrease
s the support threshold increases, there were still 144 distinct FCPCs
emaining when 5 CPC-Gs should support the FCPC. This means that
he FCPCs commonly exist in the projects.

Among the 243 distinct FCPCs that have the minimum support of
in all projects, we identify 183 FCPCs that occur in at least two

ubject projects. We believe that analyzing these FCPCs contributes to
he cross-project generality of our findings.

Table 4 shows the percentages of the coverage on CPC-Gs of Top-n
f the most frequently-occurring CPCs (i.e., with the highest supports).
11
We found that Top-10 of the most frequently-occurring CPCs covers
over 90% of all CPC-Gs. If we consider Top-40 of the most frequently-
occurring CPCs, the coverage rises to over 98%. This implies that most
of the changes on a certain code entity impose an impact to other code
entities through a few kinds of (inter-entity) relationships.

With this observation, we considered only Top-40 FCPCs in all
projects, as listed in Table 5. For each FCPC, we listed the support value
in all projects as well as in each individual projects. The most common
FCPC is 𝐶𝐸

LVAR
←←←←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

PAR
←←←←←←←←←←←←←←←←←← 𝐶𝐸 with a support value of 1,061 in

all five subject projects. This FCPC describes the relationship between
two changed code entities in the given time window, which are very
likely to be related by a local variable declaration and a parameter
in a call to an intermediate code entity which does not change. Take
the method createSSLContext (𝑒1) in class AprEndpoint, the
method storeChildren (𝑒2) in class SSLHostConfigSF and the
class SSLHostConfig (𝑒0) from Tomcat for example. In order to add
support for the configuration of OpenSSL, the method 𝑒1 and 𝑒2 changed
in three commits18, in which the changes were related by the PAR and
LVAR relationships in a call to the intermediate class 𝑒0.

We observed in this list that, among the top 20 FCPCs, 19 has the
UE (i.e., unchanged entity) as the middle code entity. This means that
the source code changes in one entity impose an indirect impact to the
other code entity on the other end of the FCPC through an unchanged
intermediate. We call such a FCPC a Type-0 FCPC. If the intermediate
code entity is the CE (i.e., changed entity), we call the FCPC a Type-1
FCPC. We find that Type-0 FCPCs occur more frequently than Type-1
FCPCs, as shown in Table 4. Top 10-30 Type-0 FCPCs cover 78%–97%
of CPC-Gs, whereas top 10-30 Type-1 FCPCs only cover 28%–45% of
CPC-Gs. The column Type in Table 5 shows this type information.

We investigated the Type-0 FCPC cases and found that the un-
changed code entities typically acted as a bridge to propagate the
changes. For example, when two methods being changed in multiple
commits both have a CALL relationship to a shared unchanged method,
the unchanged method is usually a getter/setter, a utility method, a
logging method, or a constructor. In most cases, we find the Type-
0 FCPCs represent loose coupling between the changed code entities
through the intermediate unchanged code entity.

18 Their commit hashes are ‘5b1f5e389ec3238b66d9bd7a724ead63b843cce1‘
‘5777168f58476da9d120b3b186126703e93df224‘, and ‘5777168f58476da9d-
120b3b186126703e93df224‘.

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.

5
f
p

r

Table 5
The top 40 FCPCs that occur in at least two subject projects.

No. Type FCPC # sum of Tomcat Jmeter Kafka Pinot Iceberg

support rank support rank support rank support rank support rank support

0 0 𝐶𝐸
LVAR
←←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

PAR
←←←←←←←←←←←←←←←←← 𝐶𝐸 1,061 1 57 0 111 1 236 0 319 0 338

1 0 𝐶𝐸
LVAR
←←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

LVAR
←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 948 3 49 1 98 2 230 1 301 2 270

2 0 𝐶𝐸
PAR
←←←←←←←←←←←←←←←←→ 𝑈𝐸

PAR
←←←←←←←←←←←←←←←←← 𝐶𝐸 816 4 48 2 85 5 157 3 219 1 307

3 0 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

CALL
←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 749 0 79 5 59 7 136 2 246 5 229

4 0 𝐶𝐸
CRE
←←←←←←←←←←←←←←←→ 𝑈𝐸

CRE
←←←←←←←←←←←←←←←← 𝐶𝐸 621 10 22 8 50 0 247 6 158 9 144

5 0 𝐶𝐸
LVAR
←←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

RET
←←←←←←←←←←←←←←←← 𝐶𝐸 616 17 15 4 61 8 124 5 178 4 238

6 0 𝐶𝐸
CRE
←←←←←←←←←←←←←←←→ 𝑈𝐸

LVAR
←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 613 6 29 3 63 3 221 4 194 14 106

7 0 𝐶𝐸
CRE
←←←←←←←←←←←←←←←→ 𝑈𝐸

PAR
←←←←←←←←←←←←←←←←← 𝐶𝐸 520 12 21 6 59 4 165 8 143 10 132

8 0 𝐶𝐸
PAR
←←←←←←←←←←←←←←←←→ 𝑈𝐸

RET
←←←←←←←←←←←←←←←← 𝐶𝐸 516 23 12 7 56 13 71 9 121 3 256

9 0 𝐶𝐸
LVAR
←←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

MVAR
←←←←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 468 18 15 22 13 6 153 12 95 7 192

10 0 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

LVAR
←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 412 7 29 9 38 12 82 7 143 11 120

11 0 𝐶𝐸
MVAR
←←←←←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

PAR
←←←←←←←←←←←←←←←←← 𝐶𝐸 403 15 17 27 10 9 102 17 70 6 204

12 0 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

PAR
←←←←←←←←←←←←←←←←← 𝐶𝐸 361 5 37 12 32 14 69 10 111 13 112

13 1 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸

CALL
←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 321 2 49 10 34 15 57 13 92 15 89

14 0 𝐶𝐸
RET
←←←←←←←←←←←←←←←→ 𝑈𝐸

RET
←←←←←←←←←←←←←←←← 𝐶𝐸 309 21 13 15 26 16 56 19 69 8 145

15 0 𝐶𝐸
ACC
←←←←←←←←←←←←←←←←→ 𝑈𝐸

ACC
←←←←←←←←←←←←←←←←← 𝐶𝐸 300 8 28 11 33 11 83 14 92 19 64

16 0 𝐶𝐸
CRE
←←←←←←←←←←←←←←←→ 𝑈𝐸

RET
←←←←←←←←←←←←←←←← 𝐶𝐸 232 50 5 13 31 18 48 15 89 20 59

17 0 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

CRE
←←←←←←←←←←←←←←←← 𝐶𝐸 214 25 12 14 27 17 51 11 100 36 24

18 0 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

RET
←←←←←←←←←←←←←←←← 𝐶𝐸 211 48 6 16 22 33 19 16 77 16 87

19 0 𝐶𝐸
MVAR
←←←←←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

RET
←←←←←←←←←←←←←←←← 𝐶𝐸 198 27 11 32 7 21 33 24 31 12 116

20 0 𝐶𝐸
CRE
←←←←←←←←←←←←←←←→ 𝑈𝐸

MVAR
←←←←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 184 43 6 20 15 10 84 27 24 21 55

21 1 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←← 𝐶𝐸

CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸 177 16 16 19 16 22 31 18 69 22 45

22 1 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸

CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸 168 13 21 21 15 20 40 20 50 23 42

23 0 𝐶𝐸
MVAR
←←←←←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

MVAR
←←←←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 158 19 15 24 11 19 44 36 18 18 70

24 0 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

MVAR
←←←←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 142 31 10 37 6 29 24 25 29 17 73

25 1 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸

LVAR
←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 140 22 13 17 17 26 25 21 46 24 39

26 1 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸

CRE
←←←←←←←←←←←←←←←← 𝐶𝐸 109 36 8 28 10 30 24 22 38 31 29

27 1 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸

PAR
←←←←←←←←←←←←←←←←← 𝐶𝐸 108 30 10 25 11 35 17 23 34 28 36

28 1 𝐶𝐸
EXT
←←←←←←←←←←←←←←←→ 𝐶𝐸

EXT
←←←←←←←←←←←←←←←← 𝐶𝐸 107 14 17 26 10 24 29 39 17 29 34

29 1 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸

EXT
←←←←←←←←←←←←←←←← 𝐶𝐸 102 9 27 23 11 31 22 33 20 38 22

30 1 𝐶𝐸
ACC
←←←←←←←←←←←←←←←←→ 𝐶𝐸

ACC
←←←←←←←←←←←←←←←←← 𝐶𝐸 95 29 11 18 17 32 20 29 22 35 25

31 1 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸

RET
←←←←←←←←←←←←←←←← 𝐶𝐸 81 52 5 40 5 42 13 26 25 30 33

32 0 𝐶𝐸
IMPL
←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

LVAR
←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 77 66 4 35 6 27 25 97 4 25 38

33 1 𝐶𝐸
ACC
←←←←←←←←←←←←←←←←→ 𝐶𝐸

CALL
←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 71 20 15 38 6 36 16 38 17 46 17

34 0 𝐶𝐸
IMPL
←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

RET
←←←←←←←←←←←←←←←← 𝐶𝐸 67 42 6 47 3 34 17 95 4 26 37

35 1 𝐶𝐸
ACC
←←←←←←←←←←←←←←←←← 𝐶𝐸

CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸 66 49 5 29 10 46 12 30 22 48 17

36 0 𝐶𝐸
IMPL
←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

PAR
←←←←←←←←←←←←←←←←← 𝐶𝐸 66 59 4 59 2 28 24 – – 27 36

37 0 𝐶𝐸
ACC
←←←←←←←←←←←←←←←←→ 𝑈𝐸

PAR
←←←←←←←←←←←←←←←←← 𝐶𝐸 65 44 6 78 2 23 30 42 15 65 12

38 0 𝐶𝐸
ACC
←←←←←←←←←←←←←←←←→ 𝑈𝐸

LVAR
←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 65 83 3 45 4 25 29 32 21 80 8

39 1 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸

IMPL
←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 65 11 21 42 5 58 8 45 12 42 19
Answer to RQ2: The channels of change propagation commonly
exist in our studied open source projects. There are 183 distinct
FCPCs mined from the five subject projects, among which the top 40
FCPCs are the most commonly occurring ones, covering over 98%
cases of change propagation. FCPCs that propagate changes through
an unchanged intermediate code entity, or Type-0 FCPCs, are more
common than Type-1 FCPCs with a changed intermediate code entity.

.2.3. RQ3: Are there significant differences in the change time intervals
or changed code entities involved in the different types of frequent change
ropagation channels?

The specific code entities instantiated from the UE/CE placeholders
in a FCPC, along with the relationships in between, are recognized as an
instance of the FCPC. We considered the changes on the code entities in
the instances of the FCPCs. The changes are either co-changes or long-
term changes in the time window. We used the change time interval to
epresent the time interval between the changes in the code entities in
12
the FCPC. Obviously, the larger change time intervals imply more time
the developer will spend to correctly propagate changes.

As each FCPC may have multiple instances in a time window, we
first calculated the average change time interval for all instances of
the FCPC in the time window, and then obtained the median value
on all time windows as the median change time interval of the FCPC.
For each instance of the FCPC in a time window, we calculated the
average change time interval of all changed code entities in pairs with
the following procedure.

Considering two code entities 𝐸1 and 𝐸2 in an instance of the FCPC
that was changed in the time window, we collected the time intervals
between the nearest commit pairs where one commit was on 𝐸1 and the
other was on 𝐸2. Fig. 8 illustrates the procedure, which mainly contains
four steps: (1) Commits collection. For each code entity in an instance
of FCPC, we get its related changed commits. As shown in the figure, 𝐸1
was changed in commit 𝐶1, 𝐶2, 𝐶4, 𝐶5, 𝐶6, and 𝐶8, and 𝐸2 was changed
in commit 𝐶 ,𝐶 , and 𝐶 , and both 𝐸 and 𝐸 have been changed in the
3 5 7 1 2

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.

c
e
c
t
c
e
n

f
i

F

M
a
d
b
o
T

m
p
m
b
K
s
J
I
t
i

Fig. 8. An example of calculating the change time intervals.

ommit of 𝐶5. (2) Nearest commit selection. For each commit of a code
ntity, we find the nearest commit of other code entity. That is, if two
ode entities were changed in a same commit, the co-change commit is
he nearest commit for each other code entity; if there is no co-change
ommit, we search forward to get the latest commit of another code
ntity; if the commit does not exist, then we search backward to get the
earest one. For 𝐸1, the nearest commit pairs are 𝐶1 → 𝐶3, 𝐶2 → 𝐶3,

𝐶4 → 𝐶3, 𝐶5 → 𝐶5, 𝐶6 → 𝐶5 and 𝐶8 → 𝐶7. For 𝐸2, the nearest commit
pairs are 𝐶3 → 𝐶2, 𝐶5 → 𝐶5 and 𝐶7 → 𝐶6. (3) Duplicate commit pairs
removal. Duplicate commit pairs will be removed besides co-change
commit pairs, then 𝐶2 → 𝐶3 is removed; (4) Time interval calculation.
We count the absolute value of the time difference and calculate the
mean value, which is the average change time intervals between 𝐸1
and 𝐸2.

The Median change time intervals in Hours (MH) of the FCPCs as
per project are shown in the MH columns in Table 6. For each FCPC, we
also calculated a Weighted average of MH value (WMH) for all projects
by considering the support values of each FCPC listed in Table 5. Each
WMH value indicates the overall change time interval for an FCPC. For
example, the WMH for the FCPC No. 30 is 0.8 h ((2.7*11 + 0.3*17
+ 1.9*20 + 0.1*22 + 0*25)/(11 + 17 + 20 + 22 + 25), where the
numbers 11, 17, 20, 22, and 25 are the support values in each project),
meaning that the related source code changes covered by FCPC No. 30
are medially 0.8 h apart in our observed maintenance history.

We ranked the 40 FCPCs by the WMH values in ascending order in
Table 6 and noticed that almost all Type-1 FCPCs rank higher than the
Type-0 FCPCs.

To confirm this observation, we then conducted Mann–Whitney
U tests (Mann and Whitney, 1947) on the change time intervals for
Type-0 and Type-1 FCPCs to see whether they exhibit a significant
difference. The Mann–Whitney U test is a non-parametric test, i.e, it
does not make the assumption of a normal distribution of each group.
Since the data of the MH to be tested do not necessarily follow a
specific distribution, it is reasonable to use the Mann–Whitney U test
in our study. The magnitude of differences was measured by the Cliff’s
delta effect size (Cliff, 1993). The effect size (𝑣) was categorized as
follows (Romano et al., 2006): if |𝑣| < 0.147, the effect size is negligible;
if 0.147 ≤ |𝑣| < 0.330, the effect size is small; and if 0.330 ≤ |𝑣| < 0.474,
the effect size is medium; and otherwise the effect size is large.

Table 7 shows the results. We found that the values of MH for Type-
0 FCPCs were significantly larger than those for Type-1 FCPCs in all
projects (𝑃 < 0.05). The majority of projects exhibited large effect sizes,
with the exception of the project Tomcat, which demonstrated a medium
effect size. This means that two related changes in the code entities in
Type-0 FCPCs are separated in a longer period of time than those in
Type-1 FCPCs. In other words, Type-0 FCPCs show slower change impact
propagation than Type-1 FCPCs.
13
Answer to RQ3: There are significant differences in the change time
intervals for changed code entities involved in different FCPCs. The
FCPCs with an unchanged intermediate code entity (Type-0) typically
indicate more time spent on the involved changed code entities, in
terms of significantly longer time intervals between the code changes
in the channels, with comparison to those with a changed intermediate
code entity (Type-1).

5.2.4. RQ4: Are there significant differences in the change-proneness and
bug-proneness of code entities involved in the different types of frequent
change propagation channels?

To evaluate the change-proneness of each FCPC, we counted the
number of commits involved in each instance of this FCPC, and then
calculated theMedian Commit count (MC) of all instances of this FCPC.

To evaluate the bug-proneness of each FCPC, we first found bug-
ixing-related instances (BFIs) for each FCPC. A BFI of FCPC is an FCPC
nstance whose time window covers at least one bug-f ixing commit
(BFC). To detect BFCs, we used the Stanford CoreNLP19 to normalize
the commit messages and examined the processed messages using
the heuristic proposed by Mockus and Votta (2000) to identify those
commits that occurred for the purpose of fixing bugs. The way we
detect the BFCs was also following previous works (Kim et al., 2008;
Barbour et al., 2011; Mondal et al., 2019). We also manually checked
100 randomly selecting BFIs and confirmed that all instances were bug-
fixing related. Then, we calculated the BFIs Percentage (BP) for each
CPC to represent the bug-proneness for the FCPC.

Similar to the WMH, we also calculated the Weighted average of
Cs and BPs for all projects to get the WMC and WBP. The results

re shown in Table 6. In order to find out whether there are significant
ifferences between Type-0 and Type-1 FCPCs in change-proneness and
ug-proneness, we also apply Mann–Whitney U tests to see if the values
f MC/BP significantly differ. The results are shown in Table 8 and
able 9, respectively.

We found no significant difference in the median numbers of com-
its (MC) between Type-0 and Type-1 FCPCs, showing that the change-
roneness of different FCPCs was approximately the same. Further-
ore, it seems significant differences in the BFIs percentage (BP)

etween Type-0 and Type-1 FCPCs in almost all projects, except for
afka. However, Type-1 FCPCs are more likely to contain bug-fixing
ource code changes than Type-0 FCPCs only in project Tomcat and
meter, while such a conclusion is opposite for the project Pinot and
ceberg. Therefore, it is necessary to conduct larger scale experiments
o analyze the bug-proneness of different FCPCs. Further investigation
s still to be carried out in our future study.

Answer to RQ4: The change-proneness of code entities involved in
the FCPCs has no significance difference. But the bug-proneness of
different FCPCs needs more experiments to confirm.

5.2.5. RQ5: Which code entities are frequently involved in the change
propagation channels? are the involved files for these code entities more
bug-prone?

Recalling that the FCPCs are mined from the CPC-Gs, i.e, each in-
stance of FCPC comes from a CPC-G. We focus on the instances of FCPC
that covers the same code entities, which repeatedly propagate code
changes through a specific type of relationship. Therefore, we counted
the frequency of FCPC instances appearing in different time windows,
i.e., the number of CPC-Gs covered. The more frequent the instances of
FCPC, the more frequently their corresponding code entities propagate
code changes.

Table 10 shows the number of FCPC instances that cover 3, 4,
and 5 CPC-Gs (support thresholds). When the support threshold was

19 https://stanfordnlp.github.io/CoreNLP.

https://stanfordnlp.github.io/CoreNLP

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.
Table 6
The Median change time interval in Hours (MH), Median Commit count (MC), and BFIs Percentage (BP, %) of the FCPCs (RQ3 and RQ4).

No. Type FCPC Tomcat Jmeter Kafka Pinot Iceberg WMH WMC WBP

MH MC BP MH MC BP MH MC BP MH MC BP MH MC BP

30 1 𝐶𝐸
ACC
←←←←←←←←←←←←←←←←→ 𝐶𝐸

ACC
←←←←←←←←←←←←←←←←← 𝐶𝐸 2.7 2.0 64 0.3 2.0 100 1.9 1.3 13 0.1 1.3 32 0 1.0 14 0.8 1.4 39

13 1 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸

CALL
←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 1.4 2.0 46 0.4 2.0 94 1.3 1.0 39 3.9 2.0 45 9.8 2.0 23 4.3 1.8 43

33 1 𝐶𝐸
ACC
←←←←←←←←←←←←←←←←→ 𝐶𝐸

CALL
←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 0.9 2.0 57 0.3 2.5 100 4.5 2.0 38 0 1.0 32 14.7 2.0 9 4.7 1.8 39

35 1 𝐶𝐸
ACC
←←←←←←←←←←←←←←←←← 𝐶𝐸

CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸 1.7 2.0 50 0.5 2.0 100 12.9 2.0 29 2.3 2.0 36 9.9 1.5 18 5.9 1.9 41

22 1 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸

CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸 1.3 3.0 48 7.7 3.0 93 0.4 1.0 50 6.0 2.0 44 17.6 2.0 17 7.1 2.0 44

29 1 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸

EXT
←←←←←←←←←←←←←←←← 𝐶𝐸 1.5 3.0 56 0.4 2.0 91 8.2 2.0 52 3.2 2.0 55 19.8 2.0 18 7.1 2.3 51

39 1 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸

IMPL
←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 2.3 3.0 48 3.4 2.0 100 2.6 1.5 13 0 1.0 50 20.1 2.0 29 7.2 2.1 43

26 1 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸

CRE
←←←←←←←←←←←←←←←← 𝐶𝐸 0.1 2.0 19 0.3 2.0 100 5.6 2.0 35 1.7 2.0 36 21.0 2.0 24 7.4 2.0 37

28 1 𝐶𝐸
EXT
←←←←←←←←←←←←←←←→ 𝐶𝐸

EXT
←←←←←←←←←←←←←←←← 𝐶𝐸 1.7 3.0 53 0.5 2.8 90 12.2 2.0 29 0 1.0 41 15.1 2.0 18 8.4 2.1 37

15 0 𝐶𝐸
ACC
←←←←←←←←←←←←←←←←→ 𝑈𝐸

ACC
←←←←←←←←←←←←←←←←← 𝐶𝐸 3.4 2.0 34 3.5 2.0 94 3.5 1.5 30 5.5 2.0 39 30.2 2.0 23 9.8 1.9 39

21 1 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←← 𝐶𝐸

CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸 0.7 2.0 25 4.1 2.0 88 6.7 2.0 47 10.5 2.0 43 25.3 2.0 26 12.1 2.0 42

25 1 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸

LVAR
←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 5.1 2.0 31 0.3 2.0 94 11.2 2.0 42 10.5 2.0 33 22.9 2.0 26 12.3 2.0 40

27 1 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸

PAR
←←←←←←←←←←←←←←←←← 𝐶𝐸 6.4 3.0 40 0.5 1.5 100 14.0 2.0 12 9.5 2.0 31 22.7 2.0 35 13.4 2.0 37

17 0 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

CRE
←←←←←←←←←←←←←←←← 𝐶𝐸 0.2 1.0 38 9.6 2.0 76 10.6 2.0 40 17.2 2.0 57 15.6 2.0 19 13.5 1.9 50

31 1 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸

RET
←←←←←←←←←←←←←←←← 𝐶𝐸 3.4 3.0 20 1.1 3.0 100 12.1 2.0 31 9.3 2.0 28 21.8 2.0 35 14.0 2.1 35

37 0 𝐶𝐸
ACC
←←←←←←←←←←←←←←←←→ 𝑈𝐸

PAR
←←←←←←←←←←←←←←←←← 𝐶𝐸 3.3 2.0 33 13 2.3 100 11.5 2.0 40 15.3 1.0 27 32.6 2.0 46 15.5 1.8 39

3 0 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

CALL
←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 4.5 2.0 42 5.8 2.0 90 13.2 2.0 44 17.5 2.0 49 24.7 2.0 30 16.6 2.0 45

14 0 𝐶𝐸
RET
←←←←←←←←←←←←←←←→ 𝑈𝐸

RET
←←←←←←←←←←←←←←←← 𝐶𝐸 0.4 2.0 23 8.5 2.0 73 20.5 2.0 38 3.0 2.0 50 25.5 2.0 23 17.1 2.0 36

16 0 𝐶𝐸
CRE
←←←←←←←←←←←←←←←→ 𝑈𝐸

RET
←←←←←←←←←←←←←←←← 𝐶𝐸 1.2 2.0 20 7.4 2.0 74 28.6 2.0 42 11.5 2.0 47 27.6 2.0 30 18.4 2.0 45

23 0 𝐶𝐸
MVAR
←←←←←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

MVAR
←←←←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 6.9 2.0 13 0 1.0 82 21.5 2.0 35 2.9 1.5 39 25.9 2.0 19 18.5 1.9 30

10 0 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

LVAR
←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 11.9 2.0 29 11.2 2.0 86 10.8 2.0 48 18.4 2.0 49 33.8 2.0 33 20.2 2.0 46

38 0 𝐶𝐸
ACC
←←←←←←←←←←←←←←←←→ 𝑈𝐸

LVAR
←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 5.9 2.5 0 5.4 2.3 100 31.3 2.0 41 7.9 2.0 40 27.9 2.0 50 20.5 2.0 44

34 0 𝐶𝐸
IMPL
←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

RET
←←←←←←←←←←←←←←←← 𝐶𝐸 4.3 2.0 33 4.0 2.0 0 21.8 2.0 18 3.3 1.5 50 27.8 2.0 26 21.6 2.0 25

18 0 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

RET
←←←←←←←←←←←←←←←← 𝐶𝐸 1.1 2.0 50 9.3 2.0 75 6.9 2.0 47 21.0 2.0 49 31.5 2.0 25 22.3 2.0 42

12 0 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

PAR
←←←←←←←←←←←←←←←←← 𝐶𝐸 6.1 2.0 28 7.3 2.0 86 18.6 2.0 48 18.6 2.0 55 39.9 2.0 33 22.9 2.0 47

36 0 𝐶𝐸
IMPL
←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

PAR
←←←←←←←←←←←←←←←←← 𝐶𝐸 2.6 2.5 25 17.0 2.0 100 22.8 2.0 35 – – – 27.5 2.0 31 24.0 2.0 34

4 0 𝐶𝐸
CRE
←←←←←←←←←←←←←←←→ 𝑈𝐸

CRE
←←←←←←←←←←←←←←←← 𝐶𝐸 12.1 2.0 48 12.6 2.0 85 25.3 2.0 48 12.1 2.0 53 41.9 2.0 33 24.3 2.0 49

32 0 𝐶𝐸
IMPL
←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

LVAR
←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 3.1 2.0 50 43.1 2.5 67 20.9 2.0 54 41.6 2.3 25 29.6 2.0 30 27.1 2.1 41

2 0 𝐶𝐸
PAR
←←←←←←←←←←←←←←←←→ 𝑈𝐸

PAR
←←←←←←←←←←←←←←←←← 𝐶𝐸 3.8 2.0 44 15.4 2.0 91 23.4 2.0 42 18.6 2.0 51 42.1 2.0 38 27.1 2.0 48

6 0 𝐶𝐸
CRE
←←←←←←←←←←←←←←←→ 𝑈𝐸

LVAR
←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 7.2 2.0 36 16.0 2.0 87 29.7 2.0 47 23.7 2.0 52 42.7 2.0 35 27.6 2.0 50

1 0 𝐶𝐸
LVAR
←←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

LVAR
←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 9.6 2.0 43 14.3 2.0 91 26.0 2.0 54 23.8 2.0 55 41.4 2.0 39 27.6 2.0 53

5 0 𝐶𝐸
LVAR
←←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

RET
←←←←←←←←←←←←←←←← 𝐶𝐸 0.9 2.0 53 12.9 2.0 84 28.2 2.0 45 24.0 2.0 47 38.5 2.0 35 28.8 2.0 46

7 0 𝐶𝐸
CRE
←←←←←←←←←←←←←←←→ 𝑈𝐸

PAR
←←←←←←←←←←←←←←←←← 𝐶𝐸 5.6 2.0 21 26.9 2.0 83 26.8 2.0 45 22.2 2.0 53 43.8 2.0 31 29.0 2.0 47

20 0 𝐶𝐸
CRE
←←←←←←←←←←←←←←←→ 𝑈𝐸

MVAR
←←←←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 7.0 2.0 33 36.5 2.0 67 32.4 2.0 37 27.0 2.0 25 27.5 2.0 42 29.7 2.0 39

24 0 𝐶𝐸
CALL
←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

MVAR
←←←←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 1.8 2.0 15 19.9 2.0 83 9.4 2.0 35 26.1 2.0 45 43.1 2.0 27 30.0 2.0 34

0 0 𝐶𝐸
LVAR
←←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

PAR
←←←←←←←←←←←←←←←←← 𝐶𝐸 19.9 2.0 40 27.9 2.0 87 24.1 2.0 48 25.8 2.0 54 45.5 2.0 44 31.6 2.0 52

9 0 𝐶𝐸
LVAR
←←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

MVAR
←←←←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸 7.8 2.0 27 36.2 2.0 77 29.5 2.0 44 25.4 2.0 46 42.4 2.0 31 33.4 2.0 39

11 0 𝐶𝐸
MVAR
←←←←←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

PAR
←←←←←←←←←←←←←←←←← 𝐶𝐸 0.4 2.0 12 3.8 2.0 90 22.7 2.0 40 29.0 2.0 46 45.6 2.0 36 33.9 2.0 39

19 0 𝐶𝐸
MVAR
←←←←←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

RET
←←←←←←←←←←←←←←←← 𝐶𝐸 6.4 2.0 9 26.5 2.0 43 44.8 2.0 26 25.3 2.0 31 37.1 2.0 24 34.5 2.0 25

8 0 𝐶𝐸
PAR
←←←←←←←←←←←←←←←←→ 𝑈𝐸

RET
←←←←←←←←←←←←←←←← 𝐶𝐸 1.5 2.0 13 25.7 2.0 84 22.8 2.0 37 21.6 2.0 48 47.7 2.0 35 34.7 2.0 43
Table 7
Mann–Whitney U test (P < 0.05) of MH between Type 0 and Type 1.

Tomcat Jmeter Kafka Pinot Iceberg

Mean (Type0/Type1) 5.1/2.2 15.5/1.5 21.8/7.2 18.8/4.4 35.0/18.4
P-value 3.1E−02 1.1E−05 5.2E−05 3.2E−05 1.6E−06
Cliff’s delta 0.43 (medium) 0.87 (large) 0.8 (large) 0.83 (large) 0.95 (large)
Table 8
Mann–Whitney U test (P < 0.05) of MC between Type 0 and Type 1.

Tomcat Jmeter Kafka Pinot Iceberg

Mean (Type0/Type1) 2.0/2.5 2.0/2.2 2.0/1.8 1.9/1.7 2.8/1.9
P-value 2.8E−03 0.2 1.5E−02 0.9 0.1
Cliff’s delta 0.44 (medium) 0.19 (small) 0.28 (small) 0.24 (small) 0.19 (small)
14

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.

i
t

Table 9
Mann–Whitney U test (P < 0.05) of BP between Type 0 and Type 1.

Tomcat Jmeter Kafka Pinot Iceberg

Mean (Type0/Type1) 30%/43% 80%/96% 41%/33% 45%/33% 32%/22%
P-value 2.9E−02 1.0E−04 0.1 3.1E−02 1.5E−03
Cliff’s delta 0.46 (medium) 0.76 (large) 0.36 (medium) 0.43 (medium) 0.63 (large)
Table 10
The resulting instances of FCPCs (on the same code entities).

System # instances of FCPCs Relevance verification

≥3 CPC-Gs ≥4 CPC-Gs ≥5 CPC-Gs Commits Accuracy

Tomcat 374 158 3 47 0.9
Jmeter 120 22 12 49 0.8
Kafka 555 134 41 70 1.0
Pinot 1,247 464 191 54 0.8
Iceberg 3,356 647 63 86 1.0

Total 5,652 1,425 310 306 0.9*

Note: * = average value.
p
s
c
i

set to 3 CPC-Gs, we found a total of 5,652 FCPC instances in all
projects. Although the number of FCPC instances decreases as the
support threshold increases, there are still 310 FCPC instances when
the support threshold is set to 5 CPC-Gs. This implies that in these
projects, there are many code entities are frequently involved in the
change propagation channels (i.e., FCPC). These code entities tend to
be change-prone and are likely to propagate changes to others.

To evaluate the accuracy of the mined instances of FCPC on the
same code entities, we randomly investigated 50 instances (i.e., about
10 from each project), including instances of Type-0 and Type-1, and
manually analyzed the changes in the code entities in multiple commits.
We found that the code changes in the FCPCs were most likely related
in terms of functionality or semantics, such as completing the same
task or having similar or parent–child issue related changes. Two of
the authors individually determined the relevance of the changes in
the FCPCs and tagged the instance positive if the changes were related
(i.e., completing the same task or having similar or parent–child issue
related changes) or false otherwise. If there was disagreement between
them, a third author was brought in for independent verification, and
determined the final result with consideration of all results. We found
that, among the 50 instances of FCPCs covering 306 commits, 45 (90%)
were positives. Details are shown in the last two columns of Table 10.

Reasons behind the semantic relevance. We further summarized
the semantic relevance of changes in multiple commits for Type-0 and
Type-1 categories. For each FCPC instance, we use 𝑒0 to represent the
intermediate code entity, and use 𝑒1 and 𝑒2 to represent the other two
changed entities. Our purpose is to confirm whether the changes be-
tween 𝑒1 and 𝑒2 are semantically related, and the intermediate entity 𝑒0
s related to the changes through the mined relationships. We discussed
he scenarios in the following.

• Type-0: There are 42 instances in this category. The two code en-
tities, 𝑒1 and 𝑒2, have multiple relationships with the intermediate
𝑒0, such as LVAR, PAR, CALL, RET, and ACC. We found that 𝑒1 and
𝑒2 were changed together in four typical scenarios. (1) In about
54% of studied instances, the changes in 𝑒1 and 𝑒2 are indirectly
related to 𝑒0 via the mined relationships, such as the changes in
𝑒1 or 𝑒2 have control or data dependency with the entity 𝑒0. (2) In
about 19% of the instances, 𝑒1 and 𝑒2 commonly share the same
or similar code changes, typically in a code clone snippet, such
as adding similar statements or updating the way to invoke the
same method. (3) In about 17% of the instances, the changes in
𝑒1 and 𝑒2 are directly related to 𝑒0 via the mined relationships.
For example, both 𝑒1 and 𝑒2 experienced consistent changes to
use (i.e., CALL, ACC, PAR) the entity 𝑒0. (4) In the other 10% of
the instances, the changes between 𝑒1 and 𝑒2 are irrelevant. This
scenario mostly occurs when 𝑒1 and 𝑒2 are constructor or long
15

methods, which lacks of coupling inside the method.
• Type-1: There are 8 instances in this category. We found three
typical scenarios in source code changes of Type-1 FCPCs. (1)
In about 70% of interested instances, both 𝑒1 and 𝑒2 depend on
𝑒0, and the changes in 𝑒0 result in changes to 𝑒1 and 𝑒2. For
example, a caller method should be changed if the parameters of
the callee method are changed. (2) In about 15% of the instances,
𝑒1 depends on 𝑒0 and 𝑒0 depends on 𝑒2, so the changes in 𝑒2 result
in cascade changes on 𝑒0 and 𝑒1. (3) In the other 15% of the
instances, 𝑒0 depends on 𝑒1 and 𝑒2 so when 𝑒1 and 𝑒2 are changed,
𝑒0 also need to be changed.

The bug-proneness of the involved files. We first calculated the
ercentages of involved files for the top-N instances of FCPC on the
ame code entities, and then calculated the percentages of bug-fixing
ommits (BFCs) touching these involved files. The results are shown
n Table 11. We find that although the top-N instances involved very

few files, these files consume a significant percentage of the bug-
proneness of the project. For example, top-200 instances of FCPC,
which only contain 3%–11% of files, cover 38%–52% of BFCs. This
probably indicates that the developers only need to focus on the top
a few FCPC instances instead of reviewing all the identified in software
maintenance work.

Answer to RQ5: We find that a small proportion of code entities
do appear frequently in the FCPCs. The involved files for these
code entities contribute to a project’s bug-proneness.

6. Discussion

In this section, we present in-depth reflections based on the results
reported in the previous section.

6.1. The necessity of considering long-term changes

Developers change source code for various reasons, such as func-
tionality enhancement, new features, or bug fixes. However, one of the
difficulties in software maintenance is that source code entities have
various relationships, including but not limited to static dependencies,
to each other. Due to the complexity of various kinds of relationships,
it is likely that developers miss out some changes when responding
to a change request. Long-term changes typically come from the fact
that multiple changes serving for the same purpose may scatter in
both time and space. Herzig (2010), Herzig and Zeller (2011) tried to
capture long-term changes, and had proven that the long-term impact
of changes were important for software quality, maintainability, and
development effort. They grouped changes into change genealogies to
predict the long-term cause effect chains at method level. However, due
to the complexity of long-term changes, and the difficulty of capturing,

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.

f
c

t
p
c
i
c
b

6

N
e
t
t
t
f
t
w
c
b

m

6
c

t
M
c

F
r
𝐶
T
c
h

Table 11
The percentages of involved files and BFCs covered by top-n instances of FCPCs that occur in the same code entities.

System # of all files # of all BFCs Top-10 Top-100 Top-200

#F #BFC #F #BFC #F #BFC

Tomcat 1,765(100%) 310(100%) 1% 11% 1% 11% 2% 22%
Jmeter 1,093(100%) 509(100%) 1% 13% 5% 32% 6% 36%
Kafka 1,604(100%) 307(100%) 1% 16% 3% 31% 5% 45%
Pinot 2,359(100%) 281(100%) 1% 11% 2% 14% 3% 41%
Iceberg 826(100%) 241(100%) 1% 12% 1% 27% 8% 39%

Note: #F = the percent of involved files, #BFC = the percent of bug-fixing commits.
ew works conduct change propagation analysis considering long-term
hanges.

In this work, we used a spatial–temporal window (ST-Window)
o capture changes and also found them commonly existing in the
ropagation of impacts. As far as we know, this is the first work that
onduct change propagation analysis considering long-term changes
n code entity level. We believe that it is necessary to use long-term
hanges for change propagation analysis, and our proposed method can
e a great way for such analysis.

.2. Change patterns vs change propagation channels

Recurring code changes are usually observed as change patterns,
which could be mined by various approaches (Silva et al., 2019; Jiang
et al., 2021; Janke and Mäder, 2022; Nguyen et al., 2019; Feng et al.,
2019). In this paper, we focus on change propagation channels instead of
change patterns because we want to uncover the relationships between
changed code entities and to explain the interrelated changes. We argue
that these relationships contribute to the propagation of changes.

The concept of change propagation channel is a generalized presen-
tation of the concept of change patterns. In our work, some change
propagation channels are similar to some change patterns mined in
other research work. For example, as shown in Table 4, the FCPCs
No. 13, 21 and 22 are typical change (propagation) patterns extracted
by Feng et al. (2019), who named the three patterns Dissemination,
Concentration, and Domino. However, they did not further distinguish
the dependencies that enable the change propagation.

Another example comes with the FCPCs No. 30, 33 and 13. For
o. 30, the source code changes mainly impose impacts on other code
ntities through the Member Access (ACC) relationship, representing
hat, if a member variable is changed, the other code entities accessing
he member variable are likely to be modified correspondingly. These
hree FCPCs (No. 30, 33 and 13) are also similar to the change patterns
ound by Wang et al. (2018b), Jiang et al. (2020, 2021). However,
hey did not further investigate the time intervals between the changes,
hereas our empirical study reveals that these relationships propagate

hanges in relatively short time intervals, indicating stronger coupling
etween the related code entities.

Therefore, analysis with change propagation channels provides
ore insightful results than traditional change pattern analysis.

.3. Structural dependencies and clone relationships in change propagation
hannels

Structural dependencies and clone relationships have been proven
o cause change propagation (Oliva and Gerosa, 2015; Cui et al., 2019;
ondal et al., 2019, 2020a). As discussed in RQ2, we find common

ombinations of structural dependencies in the top 40 FCPCs.
However, there is no clone relationship involved in the top 40

CPCs. We find that the top-2 rankings of FCPCs involving clone
elationships are No. 99 and 107. The No. 99 and 107 FCPCs are
𝐸

𝐶𝐴𝐿𝐿
←←←←←←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸

𝐶𝐿𝑂
←←←←←←←←←←←→ 𝐶𝐸 and 𝐶𝐸

𝐶𝐴𝐿𝐿
←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝐶𝐸

𝐶𝐿𝑂
←←←←←←←←←←←→ 𝐶𝐸, respectively.

he reason that they ranked low is partially because we only consider
lones at method-level and thus the number of clones are not very
16

igh. However, in our case study in RQ5, we find with our manual
investigation that segment-level clones are common in FCPCs. In our
future work, we will further employ segment-level clone detection in
our approach.

6.4. Longer change propagation channels

In our approach, we defined the minimal case of a change propaga-
tion channel (Section 4.3.1), which contains code entities only in three
files with two types of relationships. However, longer change propaga-
tion channels may exist in practice. We argue that the minimal cases of
the change propagation channels could be linked by their shared code
entities so as to form up longer change propagation channels.

Recall the example in Section 2. We use the index 𝑒𝑖 to represent
the code entity for short, i.e. the method createSSLEngine is 𝑒1.
The mined cases of 𝑒2

𝐶𝐴𝐿𝐿
←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑒1

𝐶𝐴𝐿𝐿
←←←←←←←←←←←←←←←←←←←←←←←←←← 𝑒3, 𝑒1

𝐶𝐴𝐿𝐿
←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑒6

𝐶𝐴𝐿𝐿
←←←←←←←←←←←←←←←←←←←←←←←←←← 𝑒7 and

𝑒1
𝐶𝐴𝐿𝐿
←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑒𝑑

𝐸𝑋𝑇
←←←←←←←←←←←←←←←←←←←←←← 𝑒𝑒 could be linked by the common code entity 𝑒1. The

method createSSLEngine 𝑒1 is a core method in this maintenance
task, in which a new parameter clientRequestedApplication-
Protocols is added in the first commit, and the changes in the second
and third commits are made to handle the newly-added parameter. The
linked channels form up a longer change propagation channel which
could help developer better understand the path of change propagation
and complete the next maintenance task.

There are various ways to link the minimal cases of the change
propagation channels. For example, two distinct cases of change prop-
agation channels that share the intermediate code entity, or share the
code entity at both ends of the channels. We count the most common
linked types with these two ways and find the top-three most frequently
recurring linked channels are: 𝐶𝐸

LVAR
←←←←←←←←←←←←←←←←←←←←←←→ 𝑈𝐸

PAR
←←←←←←←←←←←←←←←←←← 𝐶𝐸, 𝐶𝐸

LVAR
←←←←←←←←←←←←←←←←←←←←←←→

𝑈𝐸
LVAR
←←←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸, and 𝐶𝐸

PAR
←←←←←←←←←←←←←←←←←→ 𝑈𝐸

PAR
←←←←←←←←←←←←←←←←←← 𝐶𝐸. Further research on more

linked types of the change propagation channel and the longer change
propagation channels are scheduled as our future work. We believe
that the minimal change propagation channels provide a starting point
for developers to understand the longer cases of change propagation
channels.

6.5. Tangled changes

During interactions with version control systems, developers may
commit unrelated or loosely related code changes in a single commit,
resulting in a tangled change (Herzig and Zeller, 2013). Consequently,
when examining the code change history, such tangled changes can
falsely establish connections among all modules, thereby potentially
compromising resulting analyses through noise and bias (Herzig and
Zeller, 2013). To address this challenge, we have endeavored to miti-
gate the impact of tangled changes through the following two ways.

First, we limit the number of files touched in a core commit up to
𝑁 (i.e., 5), which is discussed in Section 5.1. A commit that has too
many changes are more likely to be a house-keeping commit and may
impose a negative effect on the change propagation analysis.

Second, we create a time window for the core commit and construct
an ST-CRG representing changes related to core entities within the
given spatial–temporal window (Section 4.2.3). Only changed code

entities within the k-hop range are considered, removing irrelevant

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.

s
f
b
i
d
i

8

i

p

changes. The relevance defined in this paper is based on dependency
relationships. Although this is an instinctive decision, we find it a
feasible solution to capture the related code changes for the core
entities.

We are also trying to explicitly isolate the tangled changes with
techniques like history slicing, which is ongoing work and not included
in this paper.

6.6. Limitations

First, the programming language supported by our approach is
currently limited to Java. Although CLDIFF and Depends support many
other programming languages, we have not yet integrated other lan-
guage support due to engineering limit. We are planning to support
more languages in our further work.

Second, it is worth noting that our current AST-based matching
technology may not provide adequate support for frequent branch
merging and refactoring. Nevertheless, alternative code entity map-
ping technologies may be employed in our approach. Additionally, we
intend to improve the AST-based matching technology in future work.

Third, our approach is mostly applicable to uncover long-term
changes where the link between issues and commits is obscure. Since
changes belonging to different issues may also impact each other, such
as in similar or parent–child issues, our work offers a flexible method-
ology to capture the long-term changes for these issues. Moreover, due
to the complexity dependency analysis, we currently limit the scope of
long-term changes with a range of space and time. This is a way to filter
out some loosely-related changes serving for different development
activities in a composite commit (Herzig and Zeller, 2013). Of course,
there may exist more ways to capture the long-term changes, such as
transaction dependency graphs (TDGs) (Herzig, 2010). Utilizing other
ways to capture such impacts of changes is scheduled in our further
work.

Fourth, only structural dependencies and code clone relationships
are considered for change propagation analysis in this work. However,
many more relationships among code entities may also contribute to
propagation of changes, such as semantic couplings (Ajienka et al.,
2018), developer interactions (Ashraf et al., 2019), or change genealo-
gies (Herzig and Zeller, 2011). Considering more relationship types is
part of our future work.

Last, we only extract clone relationship at method level. However,
we also find that segment-level clones are also suitable for representing
similar code changes among code entities, which is also observed
by Mondal et al. (2019, 2020a). We plan to consider finer-grained
clones for change propagation analysis in the future.

7. Potential applications

Based on the tool CPCMiner, we collected and publicly released
software relationship graphs (SRGs) and code entity change informa-
tion for a total of five high-quality open-source projects, consisting
of 5,032 code snapshot versions. Furthermore, we proposed a novel
graph representation (i.e., ST-CDG) to capture long-term changes based
on spatial–temporal windows, and mined 40 most frequent change
propagation channels (FCPCs) using graph mining techniques. In the
following, we will introduce the potential applications of our work from
four different perspectives.

Researchers. First, considering the recurring nature of code co-
changes, researchers have been trying various approaches to utilize
co-changes in order to complete specific tasks (Oliva and Gerosa,
2015; Wang et al., 2018b; Feng et al., 2019; Silva et al., 2019; Jiang
et al., 2020, 2021), such as bug fixes (Wang et al., 2018b), code
change recommendation (Jiang et al., 2020, 2021), software evolu-
tion analysis (Feng et al., 2019), etc. They have demonstrated the
effectiveness of recurring co-change patterns in these specific tasks.
In this study, we explored the time intervals between changes and
17
confirmed that these co-change patterns are characterized by short time
intervals. We find that co-changed code entities usually share certain
commonality, e.g., depending on common code entities with different
relationships or common relationships. Therefore, our findings validate
the observations made in prior researches.

Second, our tool CPCMiner and SRGs dataset can also enhance
existing works. If one utilizes our SRGs dataset, which contain various
types of software relationships, this could increase the work’s effective-
ness. For example, Wang et al. (2018b) identified six recurring change
patterns from the change dependency graphs of different bug fixes.
However, they only considered three types of relationships between the
code entities, i.e, Containment, Overriding and Access. By leveraging
our dataset encompassing a diverse array of software relationship types,
they could identify a broader spectrum of recurring change patterns.
This facilitates a more comprehensive understanding of multi-entity
changes in real bug fixes, such as interface implementation-related
errors, inconsistent fixes in clone code, and other similar instances.
Some other works (Hassan and Holt, 2004; Oliva and Gerosa, 2015;
Feng et al., 2019; Jiang et al., 2021) could also been enhanced either.

Last, some specific tasks, such as change impact analysis or change
recommendation (Zimmermann et al., 2005; Rolfsnes et al., 2016; Jiang
et al., 2020; Mondal et al., 2020a; Jiang et al., 2021), could benefit
from our approach or dataset. We have demonstrated that long-term
changes are widely existing in the process of software development,
and our proposed spatial–temporal change relationship graph is ef-
fective for capturing the long-term changes. Based on our approach
and dataset, researchers could further improve the performance of
impact prediction or recommendation tools, e.g., increasing its recall.
For example, Mondal et al. (2020a) successfully associated code clones
with association rules to better identify the impact sets. Our preliminary
experiments shows that the integration of evolutionary coupling and
spatial–temporal change relationships among code entities effectively
enhances the recall of impact prediction, which could serve as our
future work.

Software Designers or Architects can use our tool to optimize
the design of the software. For example, the No. 30 FCPC, 𝐶𝐸

𝐴𝐶𝐶
←←←←←←←←←←←←←←←←←←←←→

𝐶𝐸
𝐴𝐶𝐶
←←←←←←←←←←←←←←←←←←←←← 𝐶𝐸, represents that a change on the intermediate code

entity (i.e., Variable) can have an impact on all code entities that have
inward (afferent) ACC relationships. Note that our mined FCPCs cross
three files, which means that the code entities outside the class the
member variable belongs to could directly access the variable. This
clearly violates the encapsulation feature of member variables in object-
oriented languages. Another example comes from the clone-related
FCPCs, i.e., if the changed code entities (clone related) always have
a change time interval, these entities may suffer inconsistent changes
that should draw the attention of software designers.

Tool Builders can use our tool or dataset to build useful tools, such
as dependency analysis tools, code entity mapping tools, technical debt
detection tools, etc. For example, DV8 (Cai and Kazman, 2019), an
automated architecture analysis tool suite, is inspired from architec-
ture anti-pattern. Our mined FCPCs, e.g., No. 30, could provide more
inspiration for tool builders to create debt detection tools.

Developers. In Sections Section 5.2.5, we observe evidence that
ome code entities do appear frequently in the FCPCs and the involved
iles contribute to a project’s bug-proneness. The mined FCPCs can
e a bridge to link the code entities which always change together
n a period of time. The FCPCs could be used as a signal or hint for
evelopers to search for the related bug-prone files or code entities even
f they have no direct relationships.

. Threats to validity

Our results and findings in the empirical study suffer from several
nternal and external threats.
Threats to internal validity : Our approach largely depends on the

recision and recall of the detection of the static dependencies and code

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.

p
t
s
p

9

d

9

u
2
e
2
p
T
m
r
g
p
S
t
n
b
T
c
m
p
a
p

c
e
s
c
T
s
b
t
a
c

clones. Wrongly detected dependencies and code clones are threats to
the validity of our results. To mitigate this threat, we have carefully
chosen the static analysis tool and the clone detection tool and spent
large effort in optimizing the tools. Manual verification on random
samples confirms that the precision and recall of the detection of
dependencies and code clones are acceptable in our study.

Another threat comes from our choice of the two-hop relationships
among code entities. It is possible that longer hops also contribute to
the propagation of impacts. Considering the possibility that changes in
the same class or file may propagate change impacts, the minimal case
of a CPC covers four code entities in at most three files. This means that
the two code entities in the common class or files are treated together
as an intermediate entity, which extends the length of relationship hops
and mitigates the threat. Considering larger length of relationship hops
will be our future work.

Moreover, we limit the number of files touched in a core commit up
to 5, and the number of commits in ST-window up to 15. We find that
such settings are balanced between generality and performance, which
mitigates the threat. We will also test the sensibility of these thresholds
in the future.

Threats to external validity : We only consider five open source
rojects in this work, all of which are developed in Java and are from
he Apache ecosystem. Our findings may not apply to other software
ystems, such as systems developed in other languages or enterprise
roprietary software systems.

. Related work

Our work is related to change pattern mining, change recommen-
ation, and software evolution analysis.

.1. Change pattern mining

The closest related work is change pattern mining, which is used to
nderstand code changes and support software evolution (Silva et al.,
014; Jaafar et al., 2014; Silva et al., 2015a; Wang et al., 2018b; Silva
t al., 2019; Feng et al., 2019; Jiang et al., 2020, 2021; Huang et al.,
022). For instance, Wang et al. (2018b) identified six recurring change
atterns from the change dependency graphs of different bug fixes.
hey focused on three kinds of software entities: classes, field, and
ethod, and created change dependency graphs (CDGs) to connect the

elated changed entities. Similarly, Jiang et al. (2020, 2021) investi-
ated the recurring co-change patterns commonly exist in JavaScript
roject, and they found five most popular recurring change patterns.
ilva et al. (2019) conducted a large-scale study with GitHub projects
o evaluate system modularity using the co-change clustering tech-
ique (Silva et al., 2014, 2015a), and revealed six co-change patterns
y projecting frequently co-changed files over the directory structure.
hey extracted co-change graphs from history information and mine
o-change clusters in file granularity. The six co-change pattern were
ainly differed on the directory of co-change files. Feng et al. (2019)
roposed an active hotspot model to detect and monitor the emergence
nd evolution of software degradation. They discovered four recurring
ropagation patterns at the file level.

Several researchers mined code change patterns from a fine-grained
ode changes (Negara et al., 2014; Kreutzer et al., 2016; Molderez
t al., 2017; Nguyen et al., 2019; Janke and Mäder, 2022). For in-
tance, Negara et al. (2014) identified high-level, in-the-wild frequent
ode change patterns from a fine-grained sequence of code changes.
hey identified ten popular high-level program transformations de-
cribing frequent code changes. Nguyen et al. (2019) proposed a graph-
ased mining approach, CPATMINER, to identify repetitive changes in
he wild, by mining fine-grained semantic code change patterns from
large number of repositories. Janke and Mäder (2022) mined code
18

hange patterns by capturing the relational context of individual edits.
However, our research is different from theirs in three ways. First,
we constructed ST-CRGs for the core commit by a sliding spatial–
temporal window, which means not only the co-changes but also the
long-term changes were all considered. As we know, ripple effects
could happen in a series of commits, or caused by direct and indirect
dependencies (Yau et al., 1978; Hassan and Holt, 2004; Feng et al.,
2019). Our approach could capture the propagation of impacts in both
temporal and spatial space, considering the co-changes and long-term
changes together. Second, we extracted eleven dependency types for
software source code to construct ST-CRGs. It allowed us to capture
the related changed entities as many as possible and filter out lots of
irrelevant change information. Third, we translated the ST-CRGs into
CPC-Gs by aggregating relationships between the changed code enti-
ties and mined frequent change propagation channels automatically.
Compared with the previous manual summary of change patterns, our
method greatly reduces the workload of pattern mining.

9.2. Change recommendation

Various tools were built to mine version histories for code change
recommendation (Ren et al., 2004; Ying et al., 2004; Zimmermann
et al., 2005; Hassan and Holt, 2004; Rolfsnes et al., 2016, 2017; Islam
et al., 2018; Rolfsnes et al., 2018; Agrawal and Singh, 2020; Jiang
et al., 2020; Mondal et al., 2020b; Moonen et al., 2020; Jiang et al.,
2021). For instance, Zimmermann et al. (2005) developed a prototype
tool, named ROSE, to suggest further code changes by the association
rules. Rolfsnes et al. (2016) proposed an algorithm called TARMAQ
for mining evolutionary coupling and predicted co-change candidates
in file level. Some researches focused on code change recommendation
in method level. Islam et al. (2018) used transitive association rules to
realize evolutionary coupling among program entities that did not co-
change in the past. By combined with regular and transitive association
rules, their co-change prediction mechanism outperformed TARMAQ.
These works conduct code change recommendation mainly depending
on the association rules.

Some other researches predicted code changes based on change
pattern mining. For instance, Ying et al. (2004) mined frequent changed
together files from the code change history and helped developers iden-
tify relevant source code for changing. Wang et al. (2018a), Jiang et al.
(2020) introduced an automatic approach, named CMSuggester, to
suggest complementary changes for multi-entity edits in Java programs.
Jiang et al. (2021) conducted an empirical study to find the recurring
co-change patterns commonly exist in JavaScript project and built a
machine learning (ML)-based approach to recommend code changes.
Similar to these works, our research could also be used to suggest code
changes, which may construct our future work.

9.3. Software evolution analysis

A variety of studies are concerned about the evolution of software
systems across evolutionary coupling analysis (Yu, 2007; Wong and Cai,
2011; Jiang et al., 2017; Zhou et al., 2019). Yu (2007) studied the
evolution of 12 Linux kernel modules and found a linear correlation
between evolutionary coupling and structural coupling, which could
help developers understand software components co-evolution. Jiang
et al. (2017) presented an approach to group and aggregate relevant
code changes into six types of trajectory patterns which were useful
for software evolution management and quality assurance. Zhou et al.
(2019) conducted an empirical study on six open source systems to
understand evolutionary coupling by fine-grained co-change relation-
ship analysis. They revealed six co-change relation types and visualized
them in pixelmaps to understand the co-evolution file pairs.

There are works which focus on architectural evolution and de-
cay (Behnamghader et al., 2017; Le et al., 2018; Feng et al., 2019;
Garcia et al., 2022; Cui, 2021). Behnamghader et al. (2017) utilized

ARCADE to compute the decay and change metrics to observe and

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.

b
r
c
a
s
o
p
r
t
a
m
M
f
e
d
p

c
p
s
p
i

C

d

track architecture evolution. Le et al. (2018) investigated the nature
and impact of architectural smells and found its strongly correlation to
implementation issues. Garcia et al. (2022) utilized multiple architec-
tural views and architectural metrics as features to predict the quality
of an architectural element.

Our research focus on mining change propagation channels to un-
derstand code changes during software evolution. These change propa-
gation channels could be used to reveal the relationship types between
code entities that frequently propagate changes and help software
evolution analysis.

10. Conclusion

To reveal the path of change propagation, we introduced the con-
cept of change propagation channel to represent the relationship types
etween code entities that frequently propagate changes during a pe-
iod of time and within a limited space. Our approach mine frequent
hange propagation channels with considerations of both co-changes
nd long-term changes in the software evolution history. Our empirical
tudy has shown that the long-term changes widely exist in the cases
f code change propagation and should not be ignored in change
ropagation analysis. The most frequent change propagation channels
evealed by our study are sufficiently representative with regard to the
arget systems because over 98% cases of code change propagation
re covered by the channels, showing the possibility that developers
ay only consider the small part of the change propagation channels.
anual validation also shows that the changes covered by the top

requent change propagation channels are mostly relevant, to some
xtent, and could be helpful for developers to get alerted on the
irections to which the changes on the code entities are likely to be
ropagated.

We notice great opportunities in the research on developing new
ode change recommendation approaches or impact prediction ap-
roaches by finding the missing changes. We also schedule extensive
tudies on more projects from real world to investigate longer change
ropagation channels and to improve the explainability of the channels
n our future work.

RediT authorship contribution statement

Daihong Zhou: Conceptualization, Methodology, Software, Vali-
ation, Writing – original draft, Writing – review & editing. Yijian
Wu: Conceptualization, Methodology, Writing – original draft, Writing
– review & editing. Xin Peng: Conceptualization, Supervision. Jiyue
Zhang: Software, Validation. Ziliang Li: Software, Validation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data used in this work are publicly available at https://github.com/
FudanSELab/cpcminer.

Acknowledgments

This work was supported by the National Natural Science Founda-
19

tion of China (62172099).
References

Agrawal, R., Imielinski, T., Swami, A.N., 1993. Mining association rules between sets
of items in large databases. In: Buneman, P., Jajodia, S. (Eds.), Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data. Washington,
DC, USA, May 26–28, 1993, ACM Press, pp. 207–216. http://dx.doi.org/10.1145/
170035.170072.

Agrawal, A., Singh, R.K., 2020. Predicting co-change probability in software
applications using historical metadata. IET Softw. 14 (7), 739–747.

Ajienka, N., Capiluppi, A., Counsell, S., 2018. An empirical study on the interplay
between semantic coupling and co-change of software classes. Empir. Softw. Eng.
23 (3), 1791–1825.

Asaduzzaman, M., Roy, C.K., Schneider, K.A., Penta, M.D., 2013. LHDiff: A language-
independent hybrid approach for tracking source code lines. In: 2013 IEEE
International Conference on Software Maintenance. Eindhoven, the Netherlands,
September 22–28, 2013, IEEE Computer Society, pp. 230–239. http://dx.doi.org/
10.1109/ICSM.2013.34.

Ashraf, U., Mayr-Dorn, C., Egyed, A., 2019. Mining cross-task artifact dependencies
from developer interactions. In: Wang, X., Lo, D., Shihab, E. (Eds.), 26th IEEE
International Conference on Software Analysis, Evolution and Reengineering.
SANER 2019, Hangzhou, China, February 24-27, 2019, IEEE, pp. 186–196. http:
//dx.doi.org/10.1109/SANER.2019.8667990.

Barbour, L., Khomh, F., Zou, Y., 2011. Late propagation in software clones. In: IEEE
27th International Conference on Software Maintenance. ICSM 2011, Williamsburg,
VA, USA, September 25–30, 2011, IEEE Computer Society, pp. 273–282. http:
//dx.doi.org/10.1109/ICSM.2011.6080794.

Behnamghader, P., Le, D.M., Garcia, J., Link, D., Shahbazian, A., Medvidovic, N., 2017.
A large-scale study of architectural evolution in open-source software systems.
Empir. Softw. Eng. 22 (3), 1146–1193.

Brudaru, I.I., Zeller, A., 2008. What is the long-term impact of changes? In: Proceedings
of the 2008 International Workshop on Recommendation Systems for Software
Engineering. RSSE 2008, Atlanta, GA, USA, November 9, 2008, ACM, pp. 30–32.
http://dx.doi.org/10.1145/1454247.1454257.

Cai, Y., Kazman, R., 2019. DV8: automated architecture analysis tool suites. In:
Avgeriou, P., Schmid, K. (Eds.), Proceedings of the Second International Conference
on Technical Debt. TechDebt@ICSE 2019, Montreal, QC, Canada, May 26-27, 2019,
IEEE / ACM, pp. 53–54. http://dx.doi.org/10.1109/TechDebt.2019.00015, URL:
https://dl.acm.org/citation.cfm?id=3355333.

Cliff, N., 1993. Dominance statistics: Ordinal analyses to answer ordinal questions.
Psychol. Bull. 114 (3), 494.

Cordella, L.P., Foggia, P., Sansone, C., Vento, M., 2004. A (sub)graph isomorphism
algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26
(10), 1367–1372.

Cui, D., 2021. Early detection of flawed structural dependencies during software
evolution. IEEE Access 9, 28856–28871.

Cui, D., Liu, T., Cai, Y., Zheng, Q., Feng, Q., Jin, W., Guo, J., Qu, Y., 2019. Investigating
the impact of multiple dependency structures on software defects. In: Atlee, J.M.,
Bultan, T., Whittle, J. (Eds.), Proceedings of the 41st International Conference on
Software Engineering. ICSE 2019, Montreal, QC, Canada, May 25–31, 2019, IEEE
/ ACM, pp. 584–595. http://dx.doi.org/10.1109/ICSE.2019.00069.

Falleri, J., Morandat, F., Blanc, X., Martinez, M., Monperrus, M., 2014. Fine-grained
and accurate source code differencing. In: Crnkovic, I., Chechik, M., Grünbacher, P.
(Eds.), ACM/IEEE International Conference on Automated Software Engineering.
ASE ’14, Vasteras, Sweden - September 15–19, 2014, ACM, pp. 313–324. http:
//dx.doi.org/10.1145/2642937.2642982.

Feng, Q., Cai, Y., Kazman, R., Cui, D., Liu, T., Fang, H., 2019. Active hotspot: An
issue-oriented model to monitor software evolution and degradation. In: 34th
IEEE/ACM International Conference on Automated Software Engineering. ASE
2019, San Diego, CA, USA, November 11–15, 2019, IEEE, pp. 986–997. http:
//dx.doi.org/10.1109/ASE.2019.00095.

Fluri, B., Würsch, M., Pinzger, M., Gall, H.C., 2007. Change distilling: Tree differencing
for fine-grained source code change extraction. IEEE Trans. Softw. Eng. 33 (11),
725–743.

Garcia, J., Kouroshfar, E., Ghorbani, N., Malek, S., 2022. Forecasting architectural decay
from evolutionary history. IEEE Trans. Softw. Eng. 48 (7), 2439–2454.

Han, J., 1997. Supporting impact analysis and change propagation in software
engineering environments. In: Proceedings Eighth IEEE International Workshop
on Software Technology and Engineering Practice Incorporating Computer Aided
Software Engineering. pp. 172–182. http://dx.doi.org/10.1109/STEP.1997.615479.

Hassan, A.E., Holt, R.C., 2004. Predicting change propagation in software systems.
In: 20th International Conference on Software Maintenance. ICSM 2004, 11–17
September 2004, Chicago, IL, USA, IEEE Computer Society, pp. 284–293. http:
//dx.doi.org/10.1109/ICSM.2004.1357812.

Herzig, K.S., 2010. Capturing the long-term impact of changes. In: Kramer, J.,
Bishop, J., Devanbu, P.T., Uchitel, S. (Eds.), Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 2. ICSE 2010, Cape
Town, South Africa, 1–8 May 2010, ACM, pp. 393–396. http://dx.doi.org/10.1145/
1810295.1810401.

https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
https://github.com/FudanSELab/cpcminer
http://dx.doi.org/10.1145/170035.170072
http://dx.doi.org/10.1145/170035.170072
http://dx.doi.org/10.1145/170035.170072
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb2
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb2
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb2
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb3
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb3
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb3
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb3
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb3
http://dx.doi.org/10.1109/ICSM.2013.34
http://dx.doi.org/10.1109/ICSM.2013.34
http://dx.doi.org/10.1109/ICSM.2013.34
http://dx.doi.org/10.1109/SANER.2019.8667990
http://dx.doi.org/10.1109/SANER.2019.8667990
http://dx.doi.org/10.1109/SANER.2019.8667990
http://dx.doi.org/10.1109/ICSM.2011.6080794
http://dx.doi.org/10.1109/ICSM.2011.6080794
http://dx.doi.org/10.1109/ICSM.2011.6080794
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb7
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb7
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb7
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb7
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb7
http://dx.doi.org/10.1145/1454247.1454257
http://dx.doi.org/10.1109/TechDebt.2019.00015
https://dl.acm.org/citation.cfm?id=3355333
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb10
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb10
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb10
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb11
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb11
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb11
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb11
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb11
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb12
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb12
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb12
http://dx.doi.org/10.1109/ICSE.2019.00069
http://dx.doi.org/10.1145/2642937.2642982
http://dx.doi.org/10.1145/2642937.2642982
http://dx.doi.org/10.1145/2642937.2642982
http://dx.doi.org/10.1109/ASE.2019.00095
http://dx.doi.org/10.1109/ASE.2019.00095
http://dx.doi.org/10.1109/ASE.2019.00095
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb17
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb17
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb17
http://dx.doi.org/10.1109/STEP.1997.615479
http://dx.doi.org/10.1109/ICSM.2004.1357812
http://dx.doi.org/10.1109/ICSM.2004.1357812
http://dx.doi.org/10.1109/ICSM.2004.1357812
http://dx.doi.org/10.1145/1810295.1810401
http://dx.doi.org/10.1145/1810295.1810401
http://dx.doi.org/10.1145/1810295.1810401

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.
Herzig, K., Zeller, A., 2011. Mining cause-effect-chains from version histories. In:
Dohi, T., Cukic, B. (Eds.), IEEE 22nd International Symposium on Software Reliabil-
ity Engineering. ISSRE 2011, Hiroshima, Japan, November 29 - December 2, 2011,
IEEE Computer Society, pp. 60–69. http://dx.doi.org/10.1109/ISSRE.2011.16.

Herzig, K., Zeller, A., 2013. The impact of tangled code changes. In: Zimmermann, T.,
Penta, M.D., Kim, S. (Eds.), Proceedings of the 10th Working Conference on Mining
Software Repositories. MSR ’13, San Francisco, CA, USA, May 18–19, 2013, IEEE
Computer Society, pp. 121–130. http://dx.doi.org/10.1109/MSR.2013.6624018.

Huang, K., Chen, B., Peng, X., Zhou, D., Wang, Y., Liu, Y., Zhao, W., 2018. Cldiff:
generating concise linked code differences. In: Huchard, M., Kästner, C., Fraser, G.
(Eds.), Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. ASE 2018, Montpellier, France, September 3–7, 2018, ACM,
pp. 679–690. http://dx.doi.org/10.1145/3238147.3238219.

Huang, Y., Jiang, J., Luo, X., Chen, X., Zheng, Z., Jia, N., Huang, G., 2022. Change-
patterns mapping: A boosting way for change impact analysis. IEEE Trans. Softw.
Eng. 48 (7), 2376–2398.

Islam, M.A., Islam, M.M., Mondal, M., Roy, B., Roy, C.K., Schneider, K.A., 2018.
[Research paper] detecting evolutionary coupling using transitive association rules.
In: 18th IEEE International Working Conference on Source Code Analysis and
Manipulation. SCAM 2018, Madrid, Spain, September 23–24, 2018, IEEE Computer
Society, pp. 113–122. http://dx.doi.org/10.1109/SCAM.2018.00020.

Jaafar, F., Guéhéneuc, Y., Hamel, S., Antoniol, G., 2011. An exploratory study of
macro co-changes. In: Proceedings of the 18th Working Conference on Reverse
Engineering. WCRE 2011, Limerick, Ireland, October 17–20, 2011, IEEE Computer
Society, pp. 325–334.

Jaafar, F., Guéhéneuc, Y., Hamel, S., Antoniol, G., 2014. Detecting asynchrony and
dephase change patterns by mining software repositories. J. Softw.: Evol. Process
26 (1), 77–106.

Janke, M., Mäder, P., 2022. Graph based mining of code change patterns from version
control commits. IEEE Trans. Softw. Eng. 48 (3), 848–863.

Jiang, Q., Peng, X., Wang, H., Xing, Z., Zhao, W., 2017. Understanding systematic and
collaborative code changes by mining evolutionary trajectory patterns. J. Softw.:
Evol. Process 29 (3).

Jiang, Z., Wang, Y., Zhong, H., Meng, N., 2020. Automatic method change suggestion
to complement multi-entity edits. J. Syst. Softw. 159.

Jiang, Z., Zhong, H., Meng, N., 2021. Investigating and recommending co-changed
entities for JavaScript programs. J. Syst. Softw. 180, 111027.

Kim, S., Whitehead, Jr., E.J., Zhang, Y., 2008. Classifying software changes: Clean or
buggy? IEEE Trans. Softw. Eng. 34 (2), 181–196.

Kreutzer, P., Dotzler, G., Ring, M., Eskofier, B.M., Philippsen, M., 2016. Automatic
clustering of code changes. In: Kim, M., Robbes, R., Bird, C. (Eds.), Proceedings
of the 13th International Conference on Mining Software Repositories. MSR 2016,
Austin, TX, USA, May 14–22, 2016, ACM, pp. 61–72. http://dx.doi.org/10.1145/
2901739.2901749.

Le, D.M., Link, D., Shahbazian, A., Medvidovic, N., 2018. An empirical study of
architectural decay in open-source software. In: IEEE International Conference on
Software Architecture. ICSA 2018, Seattle, WA, USA, April 30 - May 4, 2018, IEEE
Computer Society, pp. 176–185. http://dx.doi.org/10.1109/ICSA.2018.00027.

Li, G., Wu, Y., Roy, C.K., Sun, J., Peng, X., Zhan, N., Hu, B., Ma, J., 2020. SAGA:
efficient and large-scale detection of near-miss clones with GPU acceleration. In:
Kontogiannis, K., Khomh, F., Chatzigeorgiou, A., Fokaefs, M., Zhou, M. (Eds.), 27th
IEEE International Conference on Software Analysis, Evolution and Reengineering.
SANER 2020, London, on, Canada, February 18-21, 2020, IEEE, pp. 272–283.
http://dx.doi.org/10.1109/SANER48275.2020.9054832.

Mann, H.B., Whitney, D.R., 1947. On a test of whether one of two random variables
is stochastically larger than the other. Ann. Math. Stat. 50–60.

Mockus, A., Fielding, R.T., Herbsleb, J.D., 2002. Two case studies of open source
software development: Apache and mozilla. ACM Trans. Softw. Eng. Methodol. 11
(3), 309–346.

Mockus, A., Votta, L.G., 2000. Identifying reasons for software changes using historic
databases. In: 2000 International Conference on Software Maintenance. ICSM 2000,
San Jose, California, USA, October 11–14, 2000, IEEE Computer Society, pp.
120–130. http://dx.doi.org/10.1109/ICSM.2000.883028.

Molderez, T., Stevens, R., Roover, C.D., 2017. Mining change histories for unknown sys-
tematic edits. In: González-Barahona, J.M., Hindle, A., Tan, L. (Eds.), Proceedings
of the 14th International Conference on Mining Software Repositories. MSR 2017,
Buenos Aires, Argentina, May 20-28, 2017, IEEE Computer Society, pp. 248–256.
http://dx.doi.org/10.1109/MSR.2017.12.

Mondal, M., Roy, B., Roy, C.K., Schneider, K.A., 2019. An empirical study on bug
propagation through code cloning. J. Syst. Softw. 158.

Mondal, M., Roy, B., Roy, C.K., Schneider, K.A., 2020a. Associating code clones with
association rules for change impact analysis. In: Kontogiannis, K., Khomh, F.,
Chatzigeorgiou, A., Fokaefs, M., Zhou, M. (Eds.), 27th IEEE International Confer-
ence on Software Analysis, Evolution and Reengineering. SANER 2020, London,
on, Canada, February 18–21, 2020, IEEE, pp. 93–103. http://dx.doi.org/10.1109/
SANER48275.2020.9054846.

Mondal, M., Roy, B., Roy, C.K., Schneider, K.A., 2020b. HistoRank: History-based rank-
ing of co-change candidates. In: Kontogiannis, K., Khomh, F., Chatzigeorgiou, A.,
Fokaefs, M., Zhou, M. (Eds.), 27th IEEE International Conference on Software
Analysis, Evolution and Reengineering. SANER 2020, London, on, Canada, February
18–21, 2020, IEEE, pp. 240–250. http://dx.doi.org/10.1109/SANER48275.2020.
9054869.
20
Moonen, L., Binkley, D.W., Pugh, S., 2020. On adaptive change recommendation. J.
Syst. Softw. 164, 110550.

Moonen, L., Di Alesio, S., Binkley, D.W., Rolfsnes, T., 2016. Practical guidelines
for change recommendation using association rule mining. In: Lo, D., Apel, S.,
Khurshid, S. (Eds.), Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering. ASE 2016, Singapore, September 3–7, 2016,
ACM, pp. 732–743. http://dx.doi.org/10.1145/2970276.2970327.

Negara, S., Codoban, M., Dig, D., Johnson, R.E., 2014. Mining fine-grained code
changes to detect unknown change patterns. In: Jalote, P., Briand, L.C., van der
Hoek, A. (Eds.), 36th International Conference on Software Engineering. ICSE ’14,
Hyderabad, India - May 31 - June 07, 2014, ACM, pp. 803–813. http://dx.doi.org/
10.1145/2568225.2568317.

Nguyen, H.A., Nguyen, T.N., Dig, D., Nguyen, S., Tran, H., Hilton, M., 2019. Graph-
based mining of in-the-wild, fine-grained, semantic code change patterns. In:
Atlee, J.M., Bultan, T., Whittle, J. (Eds.), Proceedings of the 41st International
Conference on Software Engineering. ICSE 2019, Montreal, QC, Canada, May
25–31, 2019, IEEE / ACM, pp. 819–830. http://dx.doi.org/10.1109/ICSE.2019.
00089.

Oliva, G.A., Gerosa, M.A., 2015. Experience report: How do structural dependencies
influence change propagation? An empirical study. In: 26th IEEE International
Symposium on Software Reliability Engineering. ISSRE 2015, Gaithersbury, MD,
USA, November 2–5, 2015, IEEE Computer Society, pp. 250–260. http://dx.doi.
org/10.1109/ISSRE.2015.7381818.

Pan, W., Hua, M., Chang, C.K., Yang, Z., Kim, D., 2021. ElementRank: Ranking java
software classes and packages using a multilayer complex network-based approach.
IEEE Trans. Softw. Eng. 47 (10), 2272–2295.

Ren, X., Shah, F., Tip, F., Ryder, B.G., Chesley, O.C., 2004. Chianti: a tool for
change impact analysis of java programs. In: Vlissides, J.M., Schmidt, D.C. (Eds.),
Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications. OOPSLA 2004, October 24-
28, 2004, Vancouver, BC, Canada, ACM, pp. 432–448. http://dx.doi.org/10.1145/
1028976.1029012.

Rolfsnes, T., Di Alesio, S., Behjati, R., Moonen, L., Binkley, D.W., 2016. Generalizing
the analysis of evolutionary coupling for software change impact analysis. In: IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering,
SANER 2016, Suita, Osaka, Japan, March 14–18, 2016 - Volume 1. IEEE Computer
Society, pp. 201–212. http://dx.doi.org/10.1109/SANER.2016.101.

Rolfsnes, T., Moonen, L., Binkley, D.W., 2017. Predicting relevance of change recom-
mendations. In: Rosu, G., Penta, M.D., Nguyen, T.N. (Eds.), Proceedings of the
32nd IEEE/ACM International Conference on Automated Software Engineering. ASE
2017, Urbana, IL, USA, October 30 - November 03, 2017, IEEE Computer Society,
pp. 694–705. http://dx.doi.org/10.1109/ASE.2017.8115680.

Rolfsnes, T., Moonen, L., Di Alesio, S., Behjati, R., Binkley, D.W., 2018. Aggregating
association rules to improve change recommendation. Empir. Softw. Eng. 23 (2),
987–1035.

Romano, J., Kromrey, J.D., Coraggio, J., Skowronek, J., 2006. Appropriate statistics
for ordinal level data: Should we really be using t-test and Cohen’sd for evaluating
group differences on the NSSE and other surveys. In: Annual Meeting of the Florida
Association of Institutional Research, Vol. 177. p. 34.

Sajnani, H., Saini, V., Svajlenko, J., Roy, C.K., Lopes, C.V., 2016. Sourcerercc: scaling
code clone detection to big-code. In: Dillon, L.K., Visser, W., Williams, L.A. (Eds.),
Proceedings of the 38th International Conference on Software Engineering. ICSE
2016, Austin, TX, USA, May 14–22, 2016, ACM, pp. 1157–1168. http://dx.doi.
org/10.1145/2884781.2884877.

Shen, B., Zhang, W., Kästner, C., Zhao, H., Wei, Z., Liang, G., Jin, Z., 2021.
SmartCommit: a graph-based interactive assistant for activity-oriented commits. In:
Spinellis, D., Gousios, G., Chechik, M., Penta, M.D. (Eds.), ESEC/FSE ’21: 29th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. Athens, Greece, August 23–28, 2021, ACM,
pp. 379–390. http://dx.doi.org/10.1145/3468264.3468551.

Silva, L.L., Valente, M.T., de Almeida Maia, M., 2014. Assessing modularity using co-
change clusters. In: Binder, W., Ernst, E., Peternier, A., Hirschfeld, R. (Eds.), 13th
International Conference on Modularity. MODULARITY ’14, Lugano, Switzerland,
April 22–26, 2014, ACM, pp. 49–60. http://dx.doi.org/10.1145/2577080.2577086.

Silva, L.L., Valente, M.T., de Almeida Maia, M., 2015a. Co-change clusters: Extraction
and application on assessing software modularity. LNCS Trans. Aspect Oriented
Softw. Dev. 12, 96–131.

Silva, L.L., Valente, M.T., de Almeida Maia, M., 2019. Co-change patterns: A large scale
empirical study. J. Syst. Softw. 152, 196–214.

Silva, L.L., Valente, M.T., de Almeida Maia, M., Anquetil, N., 2015b. Developers’
perception of co-change patterns: An empirical study. In: Koschke, R., Krinke, J.,
Robillard, M.P. (Eds.), 2015 IEEE International Conference on Software Mainte-
nance and Evolution. ICSME 2015, Bremen, Germany, September 29 - October 1,
2015, IEEE Computer Society, pp. 21–30. http://dx.doi.org/10.1109/ICSM.2015.
7332448.

Wang, Y., Meng, N., Zhong, H., 2018a. CMSuggester: Method change suggestion to
complement multi-entity edits. In: Bu, L., Xiong, Y. (Eds.), Software Analysis,
Testing, and Evolution - 8th International Conference, SATE 2018, Shenzhen,
Guangdong, China, November 23–24, 2018, Proceedings. In: Lecture Notes in
Computer Science, 11293, Springer, pp. 137–153. http://dx.doi.org/10.1007/978-
3-030-04272-1_9.

http://dx.doi.org/10.1109/ISSRE.2011.16
http://dx.doi.org/10.1109/MSR.2013.6624018
http://dx.doi.org/10.1145/3238147.3238219
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb24
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb24
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb24
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb24
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb24
http://dx.doi.org/10.1109/SCAM.2018.00020
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb28
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb28
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb28
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb29
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb29
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb29
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb29
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb29
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb30
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb30
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb30
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb31
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb31
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb31
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb32
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb32
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb32
http://dx.doi.org/10.1145/2901739.2901749
http://dx.doi.org/10.1145/2901739.2901749
http://dx.doi.org/10.1145/2901739.2901749
http://dx.doi.org/10.1109/ICSA.2018.00027
http://dx.doi.org/10.1109/SANER48275.2020.9054832
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb36
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb36
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb36
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb37
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb37
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb37
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb37
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb37
http://dx.doi.org/10.1109/ICSM.2000.883028
http://dx.doi.org/10.1109/MSR.2017.12
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb40
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb40
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb40
http://dx.doi.org/10.1109/SANER48275.2020.9054846
http://dx.doi.org/10.1109/SANER48275.2020.9054846
http://dx.doi.org/10.1109/SANER48275.2020.9054846
http://dx.doi.org/10.1109/SANER48275.2020.9054869
http://dx.doi.org/10.1109/SANER48275.2020.9054869
http://dx.doi.org/10.1109/SANER48275.2020.9054869
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb43
http://dx.doi.org/10.1145/2970276.2970327
http://dx.doi.org/10.1145/2568225.2568317
http://dx.doi.org/10.1145/2568225.2568317
http://dx.doi.org/10.1145/2568225.2568317
http://dx.doi.org/10.1109/ICSE.2019.00089
http://dx.doi.org/10.1109/ICSE.2019.00089
http://dx.doi.org/10.1109/ICSE.2019.00089
http://dx.doi.org/10.1109/ISSRE.2015.7381818
http://dx.doi.org/10.1109/ISSRE.2015.7381818
http://dx.doi.org/10.1109/ISSRE.2015.7381818
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb48
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb48
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb48
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb48
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb48
http://dx.doi.org/10.1145/1028976.1029012
http://dx.doi.org/10.1145/1028976.1029012
http://dx.doi.org/10.1145/1028976.1029012
http://dx.doi.org/10.1109/SANER.2016.101
http://dx.doi.org/10.1109/ASE.2017.8115680
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb52
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb52
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb52
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb52
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb52
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb53
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb53
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb53
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb53
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb53
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb53
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb53
http://dx.doi.org/10.1145/2884781.2884877
http://dx.doi.org/10.1145/2884781.2884877
http://dx.doi.org/10.1145/2884781.2884877
http://dx.doi.org/10.1145/3468264.3468551
http://dx.doi.org/10.1145/2577080.2577086
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb57
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb57
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb57
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb57
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb57
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb58
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb58
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb58
http://dx.doi.org/10.1109/ICSM.2015.7332448
http://dx.doi.org/10.1109/ICSM.2015.7332448
http://dx.doi.org/10.1109/ICSM.2015.7332448
http://dx.doi.org/10.1007/978-3-030-04272-1_9
http://dx.doi.org/10.1007/978-3-030-04272-1_9
http://dx.doi.org/10.1007/978-3-030-04272-1_9

The Journal of Systems & Software 208 (2024) 111912D. Zhou et al.
Wang, Y., Meng, N., Zhong, H., 2018b. An empirical study of multi-entity changes in
real bug fixes. In: 2018 IEEE International Conference on Software Maintenance and
Evolution. ICSME 2018, Madrid, Spain, September 23–29, 2018, IEEE Computer
Society, pp. 287–298. http://dx.doi.org/10.1109/ICSME.2018.00038.

Wong, S., Cai, Y., 2011. Generalizing evolutionary coupling with stochastic depen-
dencies. In: Alexander, P., Pasareanu, C.S., Hosking, J.G. (Eds.), 26th IEEE/ACM
International Conference on Automated Software Engineering. ASE 2011, Lawrence,
KS, USA, November 6–10, 2011, IEEE Computer Society, pp. 293–302. http://dx.
doi.org/10.1109/ASE.2011.6100065.

Xing, Z., Stroulia, E., 2005. Umldiff: an algorithm for object-oriented design dif-
ferencing. In: Redmiles, D.F., Ellman, T., Zisman, A. (Eds.), 20th IEEE/ACM
International Conference on Automated Software Engineering. ASE 2005, November
7–11, 2005, Long Beach, CA, USA, ACM, pp. 54–65. http://dx.doi.org/10.1145/
1101908.1101919.

Yau, S.S., Collofello, J.S., MacGregor, T., 1978. Ripple effect analysis of software
maintenance. In: The IEEE Computer Society’s Second International Computer
Software and Applications Conference. COMPSAC 1978, 13–16 November, 1978,
Chicago, Illinois, USA, IEEE, pp. 60–65. http://dx.doi.org/10.1109/CMPSAC.1978.
810308.

Ying, A.T.T., Murphy, G.C., Ng, R.T., Chu-Carroll, M., 2004. Predicting source code
changes by mining change history. IEEE Trans. Softw. Eng. 30 (9), 574–586.

Yu, L., 2007. Understanding component co-evolution with a study on Linux. Empir.
Softw. Eng. 12 (2), 123–141.

Zhou, D., Wu, Y., Xiao, L., Cai, Y., Peng, X., Fan, J., Huang, L., Chen, H., 2019.
Understanding evolutionary coupling by fine-grained co-change relationship anal-
ysis. In: Guéhéneuc, Y., Khomh, F., Sarro, F. (Eds.), ICPC 2019, Montreal, QC,
Canada, May 25–31, 2019, IEEE / ACM, pp. 271–282. http://dx.doi.org/10.1109/
ICPC.2019.00046.

Zimmermann, T., Weißgerber, P., Diehl, S., Zeller, A., 2005. Mining version histories
to guide software changes. IEEE Trans. Softw. Eng. 31 (6), 429–445.
21
Daihong Zhou is a Ph.D. student in School of Computer Science of Fudan University,
Shanghai, China. He received his master degree in China University of Mining and
Technology (Beijing) in Beijing, China. His research interest include software evolution
analysis, mining software repository, technical debt, and graph data analysis.

Yijian Wu received his Ph.D. degree from Fudan University in 2006. He is currently an
associate professor in Fudan University. His research interests mainly focus on software
architecture, software reuse and product lines, and software evolution in industrial
environments.

Xin Peng received his Ph.D. degree from Fudan University in 2006. He is currently a
full professor and Deputy Dean of School of Computer Science in Fudan University.
His research interests mainly focus on intelligent software engineering techniques,
including intelligent software development and operation, microservices and cloud
native architecture, and software development data analysis.

Jiyue Zhang is a master student in School of Computer Science of Fudan University.
He received his Bachelor degree in the School of Computer Science and Technology of
Donghua University in Shanghai, China in 2020. His research interests include software
evolution analysis, mining software repository, and technical debt.

Ziliang Li is a master student in School of Computer Science of Fudan University.
He received his bachelor degree in School of Computer Science and Technology of
Tianjin University in Tianjin, China in 2019. His research interest is software evolution
analysis, mining software repository, and technical debt.

http://dx.doi.org/10.1109/ICSME.2018.00038
http://dx.doi.org/10.1109/ASE.2011.6100065
http://dx.doi.org/10.1109/ASE.2011.6100065
http://dx.doi.org/10.1109/ASE.2011.6100065
http://dx.doi.org/10.1145/1101908.1101919
http://dx.doi.org/10.1145/1101908.1101919
http://dx.doi.org/10.1145/1101908.1101919
http://dx.doi.org/10.1109/CMPSAC.1978.810308
http://dx.doi.org/10.1109/CMPSAC.1978.810308
http://dx.doi.org/10.1109/CMPSAC.1978.810308
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb65
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb65
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb65
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb66
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb66
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb66
http://dx.doi.org/10.1109/ICPC.2019.00046
http://dx.doi.org/10.1109/ICPC.2019.00046
http://dx.doi.org/10.1109/ICPC.2019.00046
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb68
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb68
http://refhub.elsevier.com/S0164-1212(23)00307-2/sb68

	Revealing code change propagation channels by evolution history mining
	Introduction
	Running Example
	Change Propagation Channel
	Approach
	Step 1: Data Preprocessing
	Step 1.1 Extracting Changed Code Entities
	Step 1.2 Constructing Software Relationship Graph Dataset

	Step 2: Spatial-Temporal Window Processing
	Step 2.1: Determining the Time Window
	Step 2.2: Code Entity Mapping
	Step 2.3: ST-CRG construction

	Step 3: Graph Transformation and Mining
	Step 3.1 Transforming ST-CRGs into a CPC-G Dataset
	Step 3.2 Frequent Subgraph Mining

	Empirical Study
	Study Setup
	Findings
	RQ1: Do the long-term changes widely exist in software maintenance history in contrast to the co-changes?
	RQ2: Do change propagation channels exist? If so, which types of relationships between code entities frequently play the role of channels that propagate changes?
	RQ3: Are there significant differences in the change time intervals for changed code entities involved in the different types of frequent change propagation channels?
	RQ4: Are there significant differences in the change-proneness and bug-proneness of code entities involved in the different types of frequent change propagation channels?
	RQ5: Which code entities are frequently involved in the change propagation channels? Are the involved files for these code entities more bug-prone?

	Discussion
	The necessity of considering long-term changes
	Change patterns vs change propagation channels
	Structural dependencies and clone relationships in change propagation channels
	Longer change propagation channels
	Tangled changes
	Limitations

	Potential Applications
	Threats to validity
	Related work
	Change Pattern Mining
	Change Recommendation
	Software Evolution Analysis

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

